Closed

System Architecture

HORIZON JU Research and Innovation Actions

Basic Information

Identifier
HORIZON-JU-SNS-2022-STREAM-B-01-01
Programme
HORIZON-JU-SNS-2022
Programme Period
2021 - 2027
Status
Closed (31094503)
Opening Date
January 18, 2022
Deadline
April 26, 2022
Deadline Model
single-stage
Budget
€6,000,000
Min Grant Amount
€6,000,000
Max Grant Amount
€6,000,000
Expected Number of Grants
1
Keywords
Communication engineering and systems telecommunic6GSmart networks and services

Description

ExpectedOutcome:

The expected outcomes support the vision of a massively digitised economy and society calling for intelligent connectivity and service provision across a huge number of heterogeneous domains, resources, and with an unlimited number of application requirements. These cover the availability of:

  • An overall system functional architecture to cater for the expected extreme 6G use cases.
  • An architecture able to break the boundaries between different infrastructure, service, business, and application environments, capable for a unified service provision across heterogeneous communication and computing environments.
  • Solutions for inter-computing beyond the inter-networking capabilities of the Internet, making possible the execution of services across multiple heterogeneous but seamlessly inter-working domains, each possibly applying different policies (e.g., in terms of security, routing, access to resources, etc.), routing mechanisms, access mode to application services, etc.
  • An internet-like architecture supporting much higher dynamics and versatility for its topology and service instantiation while significantly lowering energy consumption.
  • Architecture and technologies enabling the connectivity and service infrastructure to be programmable with a single, unifying, and open controllability framework, spanning all resources a tenant is authorized to control, including resources from currently separate and heterogeneous domains, such as enterprise and telecom networks, virtual and physical, data centres and routers, satellites, and terrestrial nodes.
Objective:

Please refer to the "Specific Challenges and Objectives" section for Stream B in the Work Programme, available under ‘Topic Conditions and Documents - Additional Documents’.

Scope:

The scope covers the realisation of a unified and open communication and computing architecture beyond the current SBA capabilities. Such architecture will enable seamless operations and service execution across a multiplicity of heterogeneous domains, infrastructures, services, business, and application heterogeneous domains, whilst providing secure and reliable scalability towards an unlimited number of application requirements. Hence paving the way towards massive digitisation. It offers a consistent/reliable programmable environment enabling “tailor made” implementation of various tenants’ requirements. Focus is on complementary issues as follows:

  • Technologies for scaling Inter-computing systems: The work addresses technologies and system architectures able to efficiently span all resources, regardless of their type (compute, storage, networking), nature (virtual/physical) or location (remote/local/cross domains), dynamically adding and removing resources as they come and go. System control solution aspects effectively handling authentication, naming, addressing, routing and related functions for massive number of elements may also be examined. Resource control takes an end-to-end approach covering the device/IoT domains with service deployment at the deepest possible “edge” in the user vicinity. The work enables a fusion of data communication with distributed computing, transforming the best effort Internet into a sustainable, greener inter-computing system. The needs of service developers and end-users may be considered, such as time-to-market, continuous functional improvements, increasing volumes of data collection for AI, the overall energy cost of providing added intelligence, as well as software foundations and interfaces, with a design-to-cost and design-to-energy efficiency framework.
  • Control and controllability separation: Infrastructure programmability is creating a new level of decoupling between the platform delivering the service and the service elements. Network virtualization brings additional degrees of freedom in flow processing and combines edge and network in one logical entity. It addresses optimal system programmability deployment on top of a shared, distributed multi-stakeholder infrastructure (at a horizontal and vertical levels). This is composed of different resources, shared by instantiation from other executed services or slices, while establishing system integrity and self-preservation in runtime for a distributed, dynamic resource environment. The architecture should be able to manage elements of different configurations and implementations, different active modules, deployed on top of more generically capable resource pool, in a multistakeholder environment. Data quality and trust levels are key parameters to consider as well as potential disruptions in network/service operation and how the overall architecture should respond to these to meet an appropriate resilience level for the service providers and the end users. Concretely, the aspect to be explored here is the separation[1] of service- and tenant-specific control in terms of the generic, autonomic, unified infrastructure and resource controllability featuring high resilience facing resource dynamics, and providing equivalents of so-called “protected modes” known from other execution environments.
  • Frictionless inter-domain resource management: The work addresses frictionless and optimised resource management and orchestration across multi-stakeholder cloud, edge, and fog platforms to meet specific application requirements (e.g., latency, performance and other relevant 6G KPI’s), with efficient utilisation of resources for both service provider and verticals operating under specific constrains (e.g., resilience, timing, cost, energy, CO2, etc). It includes capability to swap computation loads as a function of efficiency and local energy availability under strict resilience and timing requirements. To address resource control, including resource pooling, service request scheduling and conflict resolution, AI is expected to play a relevant role (e.g., network orchestration).
  • Native integration of AI for telecommunications. The massive adoption of AI tools will exacerbate the problem of energy consumption of the ICT infrastructure. Native integration of AI/ML is in scope to implement adaptive decision making at different time scales with expected impact on energy and performance efficiency gains for such distributed multi-stakeholders’ systems. The adoption of these tools may trigger changes in the existing architectures. Therefore, it will be crucial to devise energy efficient architectures and computation algorithms to have energetically sustainable communication and computing paradigms for future mobile networks that adequately explore artificial intelligence technologies. Research needs to be done on: i) distributed edge AI solutions, covering consensus convergence, resource limitations, localized data management, transfer learning; ii) adequate development of training data for telecommunications; iii) AI security and comprehensibility of ML for the applications identified above; iv) strongly distributed AI/ML instrumentation integrated at the architecture layer.
  • New Data Transfer Paradigms with deep Edge integration: The work considers systems where edge, access and cloud are increasingly undistinguishable (i.e., used homogeneously by the service layer). This work addresses edge-specific requirements originating for example from IoT devices that are service dedicated, intelligent and are yet resource constraint (e.g., micro-electronics for battery driven components). This yields a richness of resources that are challenging when being integrated into a common resource worldview. To support this, novel suitable switching, resource management and scheduling mechanisms that take all constraints into account, whilst relying on edge-specific control agents enabling the enforcement of the policies underlying the switching decisions and scheduling solutions. This further includes new IoT device management techniques that are adapted to the evolving distributed architectures for IoT systems based on an open device management ecosystem. The complexity originating from the diversity of different types of physical devices and communication links is also considered (sensors, user terminals, edge and data centre computers, optical and electrical switches, fibre, and satellite links) together with the diversity of service requirements. Highly scalable resource management techniques with deep compute/communication integration across multiple domain components are needed.
  • Improve data plane performance: The work addresses innovative protocols in view of overcoming known Internet limitations as originating from new scenarios and vertical requirements (ultra-low latency, extreme mobility, ultra-high data rates, integration of end-terminals, controlled security, space applications), It addresses functional improvements of the basic transport mechanisms with guaranteed packet delivery, increased dynamics in network topologies as well as compute resources and the resulting required flexibility in routing, while also considering security and precision delivery. These protocols should be able to flexibly operate in local/global architectures and provide primitives to perform the integration of new localized environments in an intelligent ICT infrastructure (either as overlay or underlay protocols). Brown or green slate approaches may be considered, as well as challenges from hardware architectures, protocol design, semantic approaches, optimized software focused data planes, as well as a clear migration strategy from legacy technologies.
  • Deterministic Networking: The work opens an entirely new class of innovative application by enabling deterministic networking, beyond today’s best efforts Internet characteristics. It goes well beyond the current work of 3GPP Release 16 targeting industrial applications. It addresses major challenges notably performance requirements: < 75 µs latency (including fibre transmission which adds 5 µs/km), < 8 ns timing error, and several tens of Gbps throughput for critical signals, values which are outside of the current work. It extends deterministic networking across multiple stakeholders and domains, and the associated strict reliability requirements associated with such networking in dynamic environments should be covered. Key properties of the wireless communication link are considered as an integral component for the overall deterministic network design.

Proposals may address one or more of the topics above.

[1]meaning: both conceptually and in operations, i.e., with isolation and guaranteed quality levels

Eligibility & Conditions

General conditions

1. Admissibility conditions: described in Annex A and Annex E of the Horizon Europe Work Programme General Annexes

Proposal page limits and layout: described in Part B of the Application Form available in the Submission System

The limit for a full application is 100 pages for RIA’s submitted under Stream B.

2. Eligible countries: described in Annex B of the Work Programme General Annexes

A number of non-EU/non-Associated Countries that are not automatically eligible for funding have made specific provisions for making funding available for their participants in Horizon Europe projects. See the information in the Horizon Europe Programme Guide.

 

3. Other eligibility conditions: described in Annex B of the Work Programme General Annexes

 

 

4. Financial and operational capacity and exclusion: described in Annex C of the Work Programme General Annexes

 

 

5. Evaluation and award:

 

  • Award criteria, scoring and thresholds are described in Annex D of the Work Programme General Annexes
  • For RIA’s under Streams A and B, the award criteria table is complemented with a sub criterion in the impact section reflecting the relevance for proposals to contribute to the overall IKOP objectives of the call. (text in italic below). Relevant proposals are expected to credibly contribute to the overall 5% IKOP objectives:

    • Extent to which the members of the  proposed consortium contribute to the expected level of in-kind contribution to operational activities to help reaching the target additional investments

  • For RIA’s under Streams A, B and C, and for IA’s under stream D, the award criteria table is complemented with a sub criterion in the impact section reflecting the target SME participation.

    •  SME Participation and opportunities to leverage project  results. 

       

       

       

 

  • Submission and evaluation processes are described in Annex F of the Work Programme General Annexes and the Online Manual
    • When two RIA proposals are equally ranked and that it has not been possible to separate them using first the coverage criterion, second the excellence criterion, and third the generic Impact criterion, the level of SME participation will be taken as the next criterion to sort out the ties and if still un-conclusive, the level of IKOP will be considered as appropriate. 
  • Indicative timeline for evaluation and grant agreement: described in Annex F of the Work Programme General  Annexes:
    • Information on the outcome of the evaluation: Maximum 5 months from the final date for submission
    • Indicative date for the signing of grant agreements: Maximum 8 months from the final date for submission.

 

6. Legal and financial set-up of the grants: described in Annex G of the Work Programme General Annexes

Specific conditions

7. Specific conditions: described in the specific topic of the Work Programme.

Project collaboration 

The project contracted under this call will be expected to enter into a collaboration agreement to collectively work on topics of mutual interests. To that end, they will be subject to contractual clause outlined in article 7  of the Model Grant Agreement.

Documents

Call documents:

A call-specific application form will be used in this topic — the call-specific application form is available in the Submission System.

 

Standard evaluation form will be used with the necessary adaptations

Standard evaluation form (HE RIA, IA)

 

MGA

HE General MGA v1.0

 

 

Additional documents:

HE Main Work Programme 2021–2022 – 1. General Introduction

SNS-R&I-Work-Programme-2021-2022

HE Main Work Programme 2021–2022 – 13. General Annexes

HE Programme Guide

HE Framework Programme and Rules for Participation Regulation 2021/695

HE Specific Programme Decision 2021/764

EU Financial Regulation

Rules for Legal Entity Validation, LEAR Appointment and Financial Capacity Assessment

EU Grants AGA — Annotated Model Grant Agreement

Funding & Tenders Portal Online Manual

Funding & Tenders Portal Terms and Conditions

Funding & Tenders Portal Privacy Statement

Support & Resources

Online Manual is your guide on the procedures from proposal submission to managing your grant.

Horizon Europe Programme Guide contains the detailed guidance to the structure, budget and political priorities of Horizon Europe.

Funding & Tenders Portal FAQ – find the answers to most frequently asked questions on submission of proposals, evaluation and grant management.

Research Enquiry Service – ask questions about any aspect of European research in general and the EU Research Framework Programmes in particular.

National Contact Points (NCPs) – get guidance, practical information and assistance on participation in Horizon Europe. There are also NCPs in many non-EU and non-associated countries (‘third-countries’).

Enterprise Europe Network – contact your EEN national contact for advice to businesses with special focus on SMEs. The support includes guidance on the EU research funding.

IT Helpdesk – contact the Funding & Tenders Portal IT helpdesk for questions such as forgotten passwords, access rights and roles, technical aspects of submission of proposals, etc.

European IPR Helpdesk assists you on intellectual property issues.

CEN-CENELEC Research Helpdesk and ETSI Research Helpdesk –  the European Standards Organisations advise you how to tackle standardisation in your project proposal.  

The European Charter for Researchers and the Code of Conduct for their recruitment – consult the general principles and requirements specifying the roles, responsibilities and entitlements of researchers, employers and funders of researchers.

Partner Search Services help you find a partner organisation for your proposal.

 

Latest Updates

Last Changed: February 3, 2022

 Please note that the funding rates in this topic are: 100% for non-for-profit organizations and 90% with respect to for-profit organizations. Unfortunately, the maximum funding rate in the budget table is set to 100%. We kindly ask all for-profit organizations to make a manual calculation and request only 90% of the budget.