Closed

Demonstration of stationary fuel cells in renewable energy communities

HORIZON JU Innovation Actions

Basic Information

Identifier
HORIZON-JU-CLEANH2-2025-04-01
Programme
HORIZON-JU-CLEANH2-2025
Programme Period
2021 - 2027
Status
Closed (31094503)
Opening Date
January 30, 2025
Deadline
April 23, 2025
Deadline Model
single-stage
Budget
€184,500,000
Min Grant Amount
€1,000,000
Max Grant Amount
€1,000,000
Expected Number of Grants
1
Keywords
HORIZON-JU-CLEANH2-2025-04-01HORIZON-JU-CLEANH2-2025Community-Led Local DevelopmentHydrogenRenewable Energy CHP

Description

Expected Outcome:

Energy communities enable collective and citizen-driven energy actions to support the clean energy transition. They can contribute to increasing public acceptance of renewable energy projects and make it easier to attract private investments in the clean energy transition. Energy communities can be an effective means of re-structuring our energy systems, by empowering citizens to drive the energy transition locally and directly benefit from better energy efficiency, lower bills, reduced energy poverty and more local green job opportunities. Through the ‘Clean energy for all Europeans’ package, adopted in 2019, the EU differentiated between citizen energy communities and renewable energy communities. Since then, legislation on energy communities has been further strengthened by new or revised EU rules. Renewable energy communities, as defined in Article 2(16) of Recast Renewable Energy Directive (Directive (EU) 2018/2001) can introduce positive environmental impacts by increasing the use of renewable energy, thereby enhancing local energy security and reducing energy import from the main power grid, lowering energy bills. This aggregation therefore increases collective advantages and furthermore benefits the local distribution grid thanks to sharing resources and to a more efficient energy distribution, respectively. Energy communities are also key in bearing the adoption of new energy technologies and practices, thus paving the way toward innovation in the energy landscape.

Project results are expected to contribute to the following expected outcomes:

  • Support the industrialisation of European Fuel Cell technology;
  • Showcase combined heat and power generation based on hydrogen technologies in real life applications;
  • Decentralised control of microgrids supported by real-time optimisation, which increases grid reliability and resilience, and allows for autonomous operation during disturbances;
  • Contribute to demand-side strategies, which can reduce energy bills and provide overall benefits to the energy system such as stability and less emissions;
  • Provide ancillary services to the overall energy system such as frequency control and power reliability;
  • Empower citizens and put them at the centre of the clean energy transition, which improves lives and supports energy and climate policies.

Project results are expected to contribute to the following objectives and Key Performance Indicators (KPI) of the Clean Hydrogen Joint Undertaking (JU) Strategic Research and Innovation Agenda (SRIA):

  • Prepare and demonstrate the next generation of fuel cells for stationary applications able to run under 100% hydrogen and other hydrogen-rich fuels whilst keeping high performances;
  • Demonstrate the deployment of the next generation of commercial/industrial scale fuel cell Combined Heat and Power (CHP) units from European suppliers (from 50 kWe to several MWe);
  • Contribute to the achievement of relevant KPIs, depending on the technology that will be applied, as defined in the relevant Clean Hydrogen Joint Undertaking (JU) Srategic Research and Innovation Agenda (SRIA) Annexes for 2030, namely:
    • CAPEX below 2,000 €/kW for Solid Oxide stationary fuel cells and below 900 €/kW for PEM stationary fuel cells;
    • O&M cost below 1.5 €ct/kWh for SO stationary fuel cells and below 2 €ct/kWh for PEM stationary fuel cells;
    • Availability of the system above 99% for systems applying Solid Oxide stationary fuel cells and above 98% for systems applying PEM stationary fuel cells;
    • Warm start time below 2 min for solid oxide stationary fuel cells and below 10 seconds for PEM stationary fuel cells.
Scope:

In the context of the scope of renewable energy communities provided above, proposals are expected to demonstrate an integrated renewable energy system applying stationary fuel cells, possibly in combination with other hydrogen technologies, to supply reliable and efficient energy in at least one renewable energy community. In the context of this topic a renewable energy community is expected to have the characteristics defined in Article 2(16) of the Recast Renewable Energy Directive 2018/2001 “Renewable Energy Community” even if not legally established as a legal entity.

Advantages that stationary fuel cells can bring to renewable energy communities are manyfold. Besides presenting high electrical efficiencies, stationary fuel cells can provide additional heat that can be valorised for utilisation by local industries and small businesses. They can moreover play a role in providing ancillary services to the grid, thus constituting a source of economic benefits for energy communities. They can in fact provide demand response and dispatchable power generation, and be furthermore reliably employed for backup, standby, and peak shaving applications. Last but not least, they can boost the utilisation of local resources (e.g. biomass, waste streams, etc.) and can furthermore reduce the curtailment of renewable energy.

The integrated system should address multiple energy vectors such as hydrogen, electricity, and heat and/or cooling. To this end, installations may include technologies for hydrogen handling and storage, while they should involve a fuel cell-based power supply unit, which should have a nominal capacity of 50 to 200 kWe, and whose development should stand at least at Technology Readiness Level (TRL) 5 at the beginning of the project. The final nominal capacity of the fuel cell should be appropriate for the specific renewable energy community and application. The overall system should moreover include all balance of plant components, e.g., fuel processing, compressors, valves, as well as power electronics, auxiliary power supply for the fuel cell, monitoring systems, etc., needed for continuous and efficient operation. The demonstration of the prototype system should be performed in an operational environment (TRL 7). The prototype system should be fully (i.e. electrically, thermally, etc.) integrated within the local energy system and enhance the reliability of energy supply. Utilisation of exhaust streams like biogenic CO2 and water may also be addressed.

The renewable fuel to be used in the power supply unit (renewable hydrogen and/or other renewable hydrogen-rich fuels) may either be produced on-site or be delivered at the site. As a fuel, renewable hydrogen or other types of renewable fuels such as hydrogen-rich fuels, synthetic fuels or bio-fuels may be used.

The demonstration campaign should include the transportation of all system components at the site, their installation, and their subsequent testing for at least 3000 hours of cumulative operation in a renewable energy community (covering at least 2 different seasons, ideally summer and winter, thus, depending on the number of daily operating hours of the system, it could be split into two non-subsequent periods of 1500 hours each, yet other partitions may be possible if well justified), at a real end-user site (e.g. to supply power and heating to the residential sector, such as multi-family or individual buildings, the secondary sector, such as local industries, and/or the tertiary sector, such as administration offices, schools, university/research centre campuses, hotels, etc.).

The focus and innovation of this topic resides in the demonstration of the added value of fuel cell technologies when integrated in a local energy system, which can be either grid connected or off-grid. Proposals should build and complement projects funded by the Clean Hydrogen JU such as REMOTE[1], DEMOSOFC[2] and CRAVE-H2[3]. In addition, proposals should benefit from the learnings of already funded projects in order to push fuel cell technologies to market readiness.

Proposals should also:

  • Choose a fuel cell system which is appropriate for the final application optimising the sizing of the system according to the heat and electricity demand of the application within the renewable energy community;
  • Integrate instrumentation for all relevant units for addressing the implementation of optimal operation;
  • Address the implementation of real-time optimisation and control smart tools (for both heat and power), as part of the renewable energy community engagement strategy;
  • Assess and quantify the environmental, economic and social community benefits of the demonstration (in terms of reduction on greenhouse gases emissions during demonstration) including a comparison to other technological options where relevant for the renewable energy community;
  • Assess CAPEX, OPEX and operation and maintenance (O&M) requirements;
  • Assess the environmental, technical and economic feasibility for scale up and replication in other renewable energy communities and include activities aimed at promoting replication within the project;
  • Actively engage and seek commitment from the renewable energy community in which the demonstration campaign will take place, at least in the form of a Letter of Intent (LOI), to be included in Part B of the Proposal;
  • Analyse non-technological barriers related to the integration of the fuel cell system in the (existing) renewable energy community (e.g. administrative, legislative, public acceptance) and recommend an adapted legal framework for the roll out of the technology;
  • Contribute to meet the overall community demand (i.e. heat, electricity and cooling) with renewable energy based on renewable hydrogen.

The topic provides a chance for significantly rising the maturity level of hydrogen-based energy generating systems and for allowing for their further deployment in other areas of the hydrogen economy.

Proposals are expected to demonstrate the contribution to EU competitiveness and industrial leadership of the activities to be funded including but not limited to the origin of the equipment and components as well infrastructure purchased and built during the project. These aspects will be evaluated and monitored during the project implementation.

It is expected that Guarantees of origin (GOs) will be used to prove the renewable character of the hydrogen that is used. In this respect consortium may seek out the purchase and subsequent cancellation of GOs from the relevant Member State issuing body and if that is not yet available the consortium may proceed with the issuance and cancellation of non-governmental certificates (e.g CertifHy[4]).

For activities developing test protocols and procedures for the performance and durability assessment of electrolysers and fuel cell components proposals should foresee a collaboration mechanism with Joint Research Center (JRC)[5] (see section 2.2.4.3 "Collaboration with JRC"), in order to support EU-wide harmonisation. Test activities should adopt the already published EU harmonised testing protocols[6] to benchmark performance and quantify progress at programme level.

Proposals should provide a preliminary draft on ‘hydrogen safety planning and management’ at the project level, which will be further updated during project implementation.

For additional elements applicable to all topics please refer to section 2.2.3.2

Activities are expected to start at TRL 5 and achieve TRL 7 by the end of the project - see General Annex B.

At least one partner in the consortium must be a member of either Hydrogen Europe or Hydrogen Europe Research.

The maximum Clean Hydrogen JU contribution that may be requested is EUR 5.00 million – proposals requesting Clean Hydrogen JU contributions above this amount will not be evaluated.

The conditions related to this topic are provided in the chapter 2.2.3.2 of the Clean Hydrogen JU 2025 Annual Work Plan and in the General Annexes to the Horizon Europe Work Programme 2023–2025 which apply mutatis mutandis.

[1] https://cordis.europa.eu/project/id/779541

[2] https://cordis.europa.eu/project/id/671470

[3] https://cordis.europa.eu/project/id/101112169

[4] https://www.certifhy.eu

[5] https://www.clean-hydrogen.europa.eu/knowledge-management/collaboration-jrc-0_en

[6] https://www.clean-hydrogen.europa.eu/knowledge-management/collaboration-jrc-0/clean-hydrogen-ju-jrc-deliverables_en

Eligibility & Conditions

General conditions

1. Admissibility Conditions: Proposal page limit and layout

For all Innovation Actions the page limit of the application is 70 pages.

described in Annex A and Annex E of the Horizon Europe Work Programme General Annexes.

Proposal page limits and layout: described in Part B of the Application Form available in the Submission System.

Page limit for Innovation Actions: For all Innovation Actions the page limit of the applications are 70 pages.

2. Eligible Countries

described in Annex B of the Work Programme General Annexes.

A number of non-EU/non-Associated Countries that are not automatically eligible for funding have made specific provisions for making funding available for their participants in Horizon Europe projects. See the information in the Horizon Europe Programme Guide.

3. Other Eligibility Conditions

The following additional eligibility criteria apply: At least one partner in the consortium must be a member of either Hydrogen Europe or Hydrogen Europe Research.

The maximum Clean Hydrogen JU contribution that may be requested is EUR 5.00 million – proposals requesting Clean Hydrogen JU contributions above this amount will not be evaluated.

described in Annex B of the Work Programme General Annexes.

Additional eligibility condition: Maximum contribution per topic

For some topics, in line with the Clean Hydrogen JU SRIA, an additional eligibility criterion has been introduced to limit the Clean Hydrogen JU requested contribution mostly for actions performed at high TRL level, including demonstration in real operational environment and with important involvement from industrial stakeholders and/or end users such as public authorities. Such actions are expected to leverage co-funding as commitment from stakeholders. It is of added value that such leverage is shown through the private investment in these specific topics. Therefore, proposals requesting contributions above the amounts specified per each topic below will not be evaluated:

- HORIZON-JU-CLEANH2-2025-01-04: The maximum Clean Hydrogen JU contribution that may be requested is EUR 6.00 million

- HORIZON-JU-CLEANH2-2025-01-06: The maximum Clean Hydrogen JU contribution that may be requested is EUR 8.00 million

- HORIZON-JU-CLEANH2-2025-02-03: The maximum Clean Hydrogen JU contribution that may be requested is EUR 6.00 million

- HORIZON-JU-CLEANH2-2025-04-01: The maximum Clean Hydrogen JU contribution that may be requested is EUR 5.00 million

- HORIZON-JU-CLEANH2-2025-06-01: The maximum Clean Hydrogen JU contribution that may be requested is EUR 20.00 million

- HORIZON-JU-CLEANH2-2025-06-02: The maximum Clean Hydrogen JU contribution that may be requested is EUR 9.00 million



Additional eligibility condition: Membership to Hydrogen Europe / Hydrogen Europe Research

For the topics listed below, in line with the Clean Hydrogen JU SRIA, an additional eligibility criterion has been introduced to ensure that one partner in the consortium is a member of either Hydrogen Europe or Hydrogen Europe Research. This concerns topics targeting actions for large-scale demonstrations, flagship projects and strategic research actions, where the industrial and research partners of the Clean Hydrogen JU are considered to play a key role in accelerating the commercialisation of hydrogen technologies by being closely linked to the Clean Hydrogen JU constituency, which could further ensure full alignment with the SRIA of the JU. This approach shall also ensure the continuity of the work performed within projects funded through the H2020 and FP7, by building up on their experience and consolidating the EU value-chain. In the Call 2025 this applies to: demonstration of efficient electrolysis coupling with variable renewable electricity and/or heat integration, demonstration of innovative hydrogen and solid carbon production from renewable gases/biogenic waste processes, demonstration of scalable ammonia cracking technology, and demonstration of stationary fuel cells in renewable energy communities. This will also apply to the Hydrogen Valley (flagship) topics as they are considered of strategic importance for the European Union ambitions to double the number of Hydrogen Valleys by 2025. For the Hydrogen Valleys topics a large amount of co-investment/cofunding of project participants/beneficiaries including national and regional programmes is expected.

- HORIZON-JU-CLEANH2-2025-01-04

- HORIZON-JU-CLEANH2-2025-01-06

- HORIZON-JU-CLEANH2-2025-02-03

- HORIZON-JU-CLEANH2-2025-04-01

- HORIZON-JU-CLEANH2-2025-06-01

- HORIZON-JU-CLEANH2-2025-06-02

4. Financial and operational capacity and exclusion

described in Annex C of the Work Programme General Annexes.

5a. Evaluation and award: Award criteria, scoring and thresholds

are described in Annex D of the Work Programme General Annexes.

5b. Evaluation and award: Submission and evaluation processes

are described in Annex F of the Work Programme General Annexes and the Online Manual.



STEP (Sovereignty) Seal

For the topics below topics the STEP Seal (so called “Sovereignty Seal” under the STEP Regulation) will be awarded to proposals exceeding all of the evaluation thresholds set out in this Annual Work Programme. The STEP Seal is a label, which aims to increase the visibility of quality projects available for funding and help attract alternative and cumulative funding for quality projects, and simultaneously to provide a potential project pipeline for regional and national programmes

- HORIZON-JU-CLEANH2-2025-01-04

- HORIZON-JU-CLEANH2-2025-01-06

- HORIZON-JU-CLEANH2-2025-02-03

- HORIZON-JU-CLEANH2-2025-04-01

- HORIZON-JU-CLEANH2-2025-06-01

- HORIZON-JU-CLEANH2-2025-06-02

5c. Evaluation and award: Indicative timeline for evaluation and grant agreement

described in Annex F of the Work Programme General Annexes.

6. Legal and financial set-up of the grants

Purchases of equipment, infrastructure or other assets used for the action must be declared as depreciation costs. However, for the following equipment, infrastructure or other assets purchased specifically for the action (or developed as part of the action tasks): fuel cell system, hydrogen storage and other hydrogen related infrastructure needed for the fuel cell applicattion, costs may exceptionally be declared as full capitalised costs.

Eligible costs will take the form of a lump sum as defined in the Decision of 7 July 2021 authorising the use of lump sum contributions under the Horizon Europe Programme – the Framework Programme for Research and Innovation (2021-2027) – and in actions under the Research and Training Programme of the European Atomic Energy Community (2021-2025) [[This decision is available on the Funding and Tenders Portal, in the reference documents section for Horizon Europe, under ‘Simplified costs decisions’ or through this link: https://ec.europa.eu/info/funding-tenders/opportunities/docs/2021-2027/horizon/guidance/ls-decision_he_en.pdf]].

described in Annex G of the Work Programme General Annexes.



In addition to the standard provisions, the following specific provisions in the model grant agreement will apply:

1. Lump Sum

This year’s call for proposals will take the form of lump sums as defined in the Decision of 7 July 2021 authorising the use of lump sum contributions under the Horizon Europe Programme – the Framework Programme for Research and Innovation (2021- 2027) – and in actions under the Research and Training Programme of the European Atomic Energy Community (2021-2025).

Lump sums will be used across all topics in the Call 2025.



2. Full capitalised costs for purchases of equipment, infrastructure or other assets purchased specifically for the action

For some topics, in line with the Clean Hydrogen JU SRIA, mostly large-scale demonstrators or flagship projects specific equipment, infrastructure or other assets purchased specifically for the action (or developed as part of the action tasks) can exceptionally be declared as full capitalised costs. This concerns the topics below:

- HORIZON-JU-CLEANH2-2025-01-04

- HORIZON-JU-CLEANH2-2025-01-06

- HORIZON-JU-CLEANH2-2025-02-03

- HORIZON-JU-CLEANH2-2025-04-01

- HORIZON-JU-CLEANH2-2025-06-01

- HORIZON-JU-CLEANH2-2025-06-02



3. Subcontracting

For all topics: an additional obligation regarding subcontracting has been introduced, namely that subcontracted work may only be performed in target countries set out in the call conditions.

The beneficiaries must ensure that the subcontracted work is performed in the countries set out in the call conditions.

The target countries are all Member States of the European Union and all Associated Countries.



4. Intellectual Property Rights (IPR), background and results, access rights and rights of use (article 16 and Annex 5 of the Model Grant Agreement (MGA))

An additional information obligation has been introduced for topics including standardisation activities: ‘Beneficiaries must, up to 4 years after the end of the action, inform the granting authority if the results could reasonably be expected to contribute to European or international standards’. These concerns the topics below:

- HORIZON-JU-CLEANH2-2025-02-01

Specific conditions

described in the chapter 2.2.3.2 of the Clean Hydrogen JU 2025 Annual Work Programme

Support & Resources

Online Manual is your guide on the procedures from proposal submission to managing your grant.

Horizon Europe Programme Guide contains the detailed guidance to the structure, budget and political priorities of Horizon Europe.

Funding & Tenders Portal FAQ – find the answers to most frequently asked questions on submission of proposals, evaluation and grant management.

Research Enquiry Service – ask questions about any aspect of European research in general and the EU Research Framework Programmes in particular.

National Contact Points (NCPs) – get guidance, practical information and assistance on participation in Horizon Europe. There are also NCPs in many non-EU and non-associated countries (‘third-countries’).

Enterprise Europe Network – contact your EEN national contact for advice to businesses with special focus on SMEs. The support includes guidance on the EU research funding.

IT Helpdesk – contact the Funding & Tenders Portal IT helpdesk for questions such as forgotten passwords, access rights and roles, technical aspects of submission of proposals, etc.

European IPR Helpdesk assists you on intellectual property issues.

CEN-CENELEC Research Helpdesk and ETSI Research Helpdesk – the European Standards Organisations advise you how to tackle standardisation in your project proposal.

The European Charter for Researchers and the Code of Conduct for their recruitment – consult the general principles and requirements specifying the roles, responsibilities and entitlements of researchers, employers and funders of researchers.

Partner Search help you find a partner organisation for your proposal.

Latest Updates

Last Changed: August 8, 2025

CALL UPDATE:

An overview of the evaluation results for the call HORIZON-JU-CLEANH2-2025 is now available. More information can be found in this document: FLASH EVALUATION RESULTS

Last Changed: April 24, 2025

CALL UPDATE: PROPOSAL NUMBERS



Call HORIZON-JU-CLEANH2-2025 has closed on the 23/04/2025.

212 proposals have been submitted.



The breakdown per topic is:

RENEWABLE HYDROGEN PRODUCTION

-HORIZON-JU-CLEANH2-2025-01-01: 21 proposals

-HORIZON-JU-CLEANH2-2025-01-02: 10 proposals

-HORIZON-JU-CLEANH2-2025-01-03: 11 proposals

-HORIZON-JU-CLEANH2-2025-01-04: 9 proposals

-HORIZON-JU-CLEANH2-2025-01-05: 8 proposals

-HORIZON-JU-CLEANH2-2025-01-06: 14 proposals

-HORIZON-JU-CLEANH2-2025-01-07: 15 proposals



HYDROGEN STORAGE AND DISTRIBUTION

-HORIZON-JU-CLEANH2-2025-02-01: 9 proposals

-HORIZON-JU-CLEANH2-2025-02-02: 10 proposals

-HORIZON-JU-CLEANH2-2025-02-03: 7 proposals



HYDROGEN END USES: TRANSPORT APPLICATIONS

-HORIZON-JU-CLEANH2-2025-03-01: 9 proposals

-HORIZON-JU-CLEANH2-2025-03-02: 7 proposals

-HORIZON-JU-CLEANH2-2025-03-03: 7 proposals



HYDROGEN END USES: CLEAN HEAT AND POWER

-HORIZON-JU-CLEANH2-2025-04-01: 19 proposals



CROSS-CUTTING

-HORIZON-JU-CLEANH2-2025-05-01: 7 proposals

-HORIZON-JU-CLEANH2-2025-05-02: 8 proposals

-HORIZON-JU-CLEANH2-2025-05-03: 6 proposals



HYDROGEN VALLEYS

-HORIZON-JU-CLEANH2-2025-06-01: 16 proposals

-HORIZON-JU-CLEANH2-2025-06-02: 19 proposals



Evaluation results are expected to be communicated in August 2025.

Last Changed: April 15, 2025

Notice to Applicants (15/04/2025)

Please note that we will no longer be accepting questions regarding the current call for proposals HORIZON-JU-CLEANH2-2025. We appreciate your interest and encourage you to refer to the published documentation for any remaining clarifications.

Last Changed: April 15, 2025

Errata Notice - Topic HORIZON-JU-CLEANH2-2025-01-05

The correct text for topic HORIZON-JU-CLEANH2-2025-01-05 stipulates:

"Furthermore, project results are expected to contribute to the following KPIs, targeted at co-electrolyser scale, specific for three high temperature co-electrolysis technologies: Oxide and Proton conductive Solid Oxide electrolysers (SOEL, PCCEL) and Molten Carbonate Electrolyser (MCE):

Oxide conductive Solid Oxide electrolysers (SOEL)

  • Power to syngas efficiency: 0.9 kWLHV /kWe
  • Degradation in operating conditions: 0.8 %/1000h @1A/cm²
  • Unit cost: 500 €/kW

Proton Conductive Ceramic electrolysers (PCCEL)

  1. Power to syngas efficiency: 0.9 kWLHV/ kWe
  2. Degradation in operating conditions: 0.8 %/1000h @0.75A/cm²
  3. Unit cost: 500 €/kW

Molten Carbonate electrolysers (MCE)

  1. Power to syngas efficiency: 0.93 kWLHV/ kWe
  2. Degradation in operating conditions: 0.5 %/1000h @0.5A/cm²
  3. Unit cost: 500 €/kW

KPIs are defined for the main high temperature co-electrolysis techniques, derived from the SRIA and from results of previous EU funded projects."

Last Changed: April 3, 2025

Errata Notice – Topic Conditions



We appreciate your attention to this information. Please be advised that the Topic Conditions are provided below, as they were not displayed correctly under each topic. These conditions apply to all topics across the entire call.

We kindly ask you to refer to the information below and in the AWP2025 to ensure compliance with the applicable requirements.



General conditions



1. Admissibility Conditions: Proposal page limit and layout

described in Annex A and Annex E of the Horizon Europe Work Programme General Annexes.

Proposal page limits and layout: described in Part B of the Application Form available in the Submission System.

Page limit for Innovation Actions: For all Innovation Actions the page limit of the applications are 70 pages.

2. Eligible Countries 

described in Annex B of the Work Programme General Annexes.

A number of non-EU/non-Associated Countries that are not automatically eligible for funding have made specific provisions for making funding available for their participants in Horizon Europe projects. See the information in the Horizon Europe Programme Guide.

3. Other Eligibility Conditions 

described in Annex B of the Work Programme General Annexes.

Additional eligibility condition: Maximum contribution per topic

For some topics, in line with the Clean Hydrogen JU SRIA, an additional eligibility criterion has been introduced to limit the Clean Hydrogen JU requested contribution mostly for actions performed at high TRL level, including demonstration in real operational environment and with important involvement from industrial stakeholders and/or end users such as public authorities. Such actions are expected to leverage co-funding as commitment from stakeholders. It is of added value that such leverage is shown through the private investment in these specific topics. Therefore, proposals requesting contributions above the amounts specified per each topic below will not be evaluated:

- HORIZON-JU-CLEANH2-2025-01-04: The maximum Clean Hydrogen JU contribution that may be requested is EUR 6.00 million

- HORIZON-JU-CLEANH2-2025-01-06: The maximum Clean Hydrogen JU contribution that may be requested is EUR 8.00 million

- HORIZON-JU-CLEANH2-2025-02-03: The maximum Clean Hydrogen JU contribution that may be requested is EUR 6.00 million

- HORIZON-JU-CLEANH2-2025-04-01: The maximum Clean Hydrogen JU contribution that may be requested is EUR 5.00 million

- HORIZON-JU-CLEANH2-2025-06-01: The maximum Clean Hydrogen JU contribution that may be requested is EUR 20.00 million

- HORIZON-JU-CLEANH2-2025-06-02: The maximum Clean Hydrogen JU contribution that may be requested is EUR 9.00 million



Additional eligibility condition: Membership to Hydrogen Europe / Hydrogen Europe Research

For the topics listed below, in line with the Clean Hydrogen JU SRIA, an additional eligibility criterion has been introduced to ensure that one partner in the consortium is a member of either Hydrogen Europe or Hydrogen Europe Research. This concerns topics targeting actions for large-scale demonstrations, flagship projects and strategic research actions, where the industrial and research partners of the Clean Hydrogen JU are considered to play a key role in accelerating the commercialisation of hydrogen technologies by being closely linked to the Clean Hydrogen JU constituency, which could further ensure full alignment with the SRIA of the JU. This approach shall also ensure the continuity of the work performed within projects funded through the H2020 and FP7, by building up on their experience and consolidating the EU value-chain. In the Call 2025 this applies to: demonstration of efficient electrolysis coupling with variable renewable electricity and/or heat integration, demonstration of innovative hydrogen and solid carbon production from renewable gases/biogenic waste processes, demonstration of scalable ammonia cracking technology, and demonstration of stationary fuel cells in renewable energy communities. This will also apply to the Hydrogen Valley (flagship) topics as they are considered of strategic importance for the European Union ambitions to double the number of Hydrogen Valleys by 2025. For the Hydrogen Valleys topics a large amount of co-investment/cofunding of project participants/beneficiaries including national and regional programmes is expected.

- HORIZON-JU-CLEANH2-2025-01-04

- HORIZON-JU-CLEANH2-2025-01-06

- HORIZON-JU-CLEANH2-2025-02-03

- HORIZON-JU-CLEANH2-2025-04-01

- HORIZON-JU-CLEANH2-2025-06-01

- HORIZON-JU-CLEANH2-2025-06-02

4. Financial and operational capacity and exclusion 

described in Annex C of the Work Programme General Annexes.

5a. Evaluation and award: Award criteria, scoring and thresholds 

are described in Annex D of the Work Programme General Annexes.

5b. Evaluation and award: Submission and evaluation processes 

are described in Annex F of the Work Programme General Annexes and the Online Manual.



STEP (Sovereignty) Seal

For the topics below topics the STEP Seal (so called “Sovereignty Seal” under the STEP Regulation) will be awarded to proposals exceeding all of the evaluation thresholds set out in this Annual Work Programme. The STEP Seal is a label, which aims to increase the visibility of quality projects available for funding and help attract alternative and cumulative funding for quality projects, and simultaneously to provide a potential project pipeline for regional and national programmes

- HORIZON-JU-CLEANH2-2025-01-04

- HORIZON-JU-CLEANH2-2025-01-06

- HORIZON-JU-CLEANH2-2025-02-03

- HORIZON-JU-CLEANH2-2025-04-01

- HORIZON-JU-CLEANH2-2025-06-01

- HORIZON-JU-CLEANH2-2025-06-02

5c. Evaluation and award: Indicative timeline for evaluation and grant agreement 

described in Annex F of the Work Programme General Annexes.

6. Legal and financial set-up of the grants 

Eligible costs will take the form of a lump sum as defined in the Decision of 7 July 2021 authorising the use of lump sum contributions under the Horizon Europe Programme – the Framework Programme for Research and Innovation (2021-2027) – and in actions under the Research and Training Programme of the European Atomic Energy Community (2021-2025) [[This decision is available on the Funding and Tenders Portal, in the reference documents section for Horizon Europe, under ‘Simplified costs decisions’ or through this link: https://ec.europa.eu/info/funding-tenders/opportunities/docs/2021-2027/horizon/guidance/ls-decision_he_en.pdf]].

described in Annex G of the Work Programme General Annexes.



In addition to the standard provisions, the following specific provisions in the model grant agreement will apply:

1. Lump Sum

This year’s call for proposals will take the form of lump sums as defined in the Decision of 7 July 2021 authorising the use of lump sum contributions under the Horizon Europe Programme – the Framework Programme for Research and Innovation (2021- 2027) – and in actions under the Research and Training Programme of the European Atomic Energy Community (2021-2025).

Lump sums will be used across all topics in the Call 2025.



2. Full capitalised costs for purchases of equipment, infrastructure or other assets purchased specifically for the action

For some topics, in line with the Clean Hydrogen JU SRIA, mostly large-scale demonstrators or flagship projects specific equipment, infrastructure or other assets purchased specifically for the action (or developed as part of the action tasks) can exceptionally be declared as full capitalised costs. This concerns the topics below:

- HORIZON-JU-CLEANH2-2025-01-04

- HORIZON-JU-CLEANH2-2025-01-06

- HORIZON-JU-CLEANH2-2025-02-03

- HORIZON-JU-CLEANH2-2025-04-01

- HORIZON-JU-CLEANH2-2025-06-01

- HORIZON-JU-CLEANH2-2025-06-02



3. Subcontracting

For all topics: an additional obligation regarding subcontracting has been introduced, namely that subcontracted work may only be performed in target countries set out in the call conditions.

The beneficiaries must ensure that the subcontracted work is performed in the countries set out in the call conditions.

The target countries are all Member States of the European Union and all Associated Countries.



4. Intellectual Property Rights (IPR), background and results, access rights and rights of use (article 16 and Annex 5 of the Model Grant Agreement (MGA))

An additional information obligation has been introduced for topics including standardisation activities: ‘Beneficiaries must, up to 4 years after the end of the action, inform the granting authority if the results could reasonably be expected to contribute to European or international standards’. These concerns the topics below:

- HORIZON-JU-CLEANH2-2025-02-01

Specific conditions 

 

Documents



Application and evaluation forms and model grant agreement (MGA): 



Application form templates

Application form - Part B (HE CleanH2 RIA, IA)

Application form - Part B (HE CleanH2 CSA)

Evaluation form templates

Standard evaluation form (HE RIA, IA)

Standard evaluation form (HE CSA)

Guidance

HE Programme Guide 

Model Grant Agreements (MGA)

Lump Sum MGA 

Call-specific instructions 

Detailed budget table (HE LS) 

Clean Hydrogen JU - Annual Work Programme 2025 (AWP 2025)

 - AWP 2025

Clean Hydrogen JU - Strategic Research and Innovation Agenda (SRIA) 

- SRIA Clean Hydrogen JU

Lump Sums Guidance

Guidance: "Lump sums - what do I need to know?"

Comprehensive information on lump sum funding in Horizon Europe 

Additional documents: 



HE Main Work Programme 2023–2025 – 1. General Introduction

HE Main Work Programme 2023–2025 – 13. General Annexes

HE Programme Guide

HE Framework Programme 2021/695

HE Specific Programme Decision 2021/764 

EU Financial Regulation 2024/2509

Rules for Legal Entity Validation, LEAR Appointment and Financial Capacity Assessment 

EU Grants AGA — Annotated Model Grant Agreement 

Funding & Tenders Portal Online Manual 

Funding & Tenders Portal Terms and Conditions 

Funding & Tenders Portal Privacy Statement



Last Changed: March 31, 2025

The excel detailed budget table available in the submission system “Download Part B templates” section had outdated values for the SME owner unit cost category.

Today, the issue has been rectified and the template available is the correct version, containing up-to-date values for the SME owner unit cost category.

Please make sure you download and use the correct budget table in your submission.

For the applicants that have already submitted their proposals, please be aware that the system still allows you to edit and re-submit your proposal using the updated excel template.

Last Changed: March 14, 2025

In section "Get support" the Specific FAQ document from call HORIZON-JU-CLEANH2-2025 has been updated

Last Changed: February 20, 2025

In section "Get support" the Specific FAQ document from call HORIZON-JU-CLEANH2-2025 has been updated

Last Changed: January 30, 2025
The submission session is now available for: HORIZON-JU-CLEANH2-2025-05-03, HORIZON-JU-CLEANH2-2025-05-02, HORIZON-JU-CLEANH2-2025-02-01, HORIZON-JU-CLEANH2-2025-03-03, HORIZON-JU-CLEANH2-2025-01-05, HORIZON-JU-CLEANH2-2025-01-01, HORIZON-JU-CLEANH2-2025-02-03, HORIZON-JU-CLEANH2-2025-05-01, HORIZON-JU-CLEANH2-2025-02-02, HORIZON-JU-CLEANH2-2025-06-02, HORIZON-JU-CLEANH2-2025-01-07, HORIZON-JU-CLEANH2-2025-06-01, HORIZON-JU-CLEANH2-2025-03-02, HORIZON-JU-CLEANH2-2025-03-01, HORIZON-JU-CLEANH2-2025-01-02, HORIZON-JU-CLEANH2-2025-04-01, HORIZON-JU-CLEANH2-2025-01-06, HORIZON-JU-CLEANH2-2025-01-04, HORIZON-JU-CLEANH2-2025-01-03
Demonstration of stationary fuel cells in renewable energy communities | Grantalist