Closed

Scalable innovative processes for the production of PEMFC MEAs

HORIZON JU Research and Innovation Actions

Basic Information

Identifier
HORIZON-JU-CLEANH2-2025-03-02
Programme
HORIZON-JU-CLEANH2-2025
Programme Period
2021 - 2027
Status
Closed (31094503)
Opening Date
January 30, 2025
Deadline
April 23, 2025
Deadline Model
single-stage
Budget
€184,500,000
Min Grant Amount
€1,000,000
Max Grant Amount
€1,000,000
Expected Number of Grants
1
Keywords
HORIZON-JU-CLEANH2-2025-03-02HORIZON-JU-CLEANH2-2025Hydrogen

Description

Expected Outcome:

Membrane Electrode Assemblies (MEAs) are a core component of fuel cells (FCs), which are expected to be produced at large scale in order to meet the different mobility industry needs and support the market growth of FCs for these applications.

However, state-of-the-art manufacturing processes still suffer from shortcomings such as:

  • Production processes manufacturing speed lagging behind the necessary capacity to meet the demand (often still utilising batch processes);
  • Catalyst Coated Membrane (CCM) deposition processes cannot reach an industrial production quality;
  • In-line quality control processes and technologies have limited defect detection capabilities, resulting in potential escape of defective parts to market and premature equipment failures in-service;
  • Manual steps induce a loss of reproducibility and quality by allowing defects all along the different manufacturing steps;
  • Recyclability by design, and associated supply chain needs, necessitate new industrial processes.

Hence, the maturity of production processes requires new developments to achieve higher production volumes and meet the stringent product quality expectations of emerging FC markets and applications (e.g., stationary applications, heavy duty road transport, maritime, rail and aviation). Considering the significant Critical Raw Material (CRM) content of state-of-the-art MEAs, development of high-volume MEA production processes should include efficient material use, together with eco-design and Life Cycle Analysis of the components and the production line.

Accordingly, project results are expected to contribute to the following expected outcomes:

  • Development of innovative solutions for material supply and/or processing for catalyst layer deposition and lamination of Gas Diffusion Layer GDLs/sub-gaskets demonstrated in a MEA compatible with industrial manufacturing process with a significant volume scale-up;
  • Demonstrate scale-up capability and maturity of the MEA process to produce industrial standard quality MEAs, including cycle time, yield, materials input, reliability of the production process, product reproducibility, quality control and increased control over specifications;
  • Process design for recycling, including Life Cycle Assessment (LCA) and cost analysis.
  • Support the development of cost competitive Proton Exchange Membrane Fuel Cell (PEMFC) components from an EU supply chain.

Project results are expected to contribute to the achievement of manufacturing KPIs including:

  • Dedicated manufacturing KPIs should be used to fully quantify the maturity of a production system:
    • Yield of the manufacturing process[1]: >90% by 2030;
    • Automation of the fabrication process: reducing to a minimum human intervention, especially manual steps should be avoided during manufacturing to improve reproducibility and repeatability;
    • Scrap rate[2]: <5% by 2030;
    • Annual production capacity[3]: 100 000 m² for aviation purpose and 500 000 m² for other mobility applications.

Proposals are encouraged to propose additional manufacturing KPIs to further quantify the maturity of the production system.

Produced MEAs should demonstrate high durability, power density, and low PGM loading. Reference values are:

  • 30,000h in transport applications (aviation, heavy-duty trucks, rail, maritime and/or passenger vehicles) that could be demonstrated by using accelerated stress-tests;
  • Power density of 1.2 W.cm-2 under standard testing conditions;
  • PGM loading in MEA 0.3g/kW.

For large scale production the cost target for road and rail applications is <50€/kW in 2030.

Scope:

This project aims at developing and scaling-up innovative manufacturing processes for MEAs of PEMFCs. Each step of the MEA manufacturing process should be addressed and achieve TRL 6 and MRL 4-5 by the end of the project, therefore demonstrating process technology in a relevant environment with capability to produce MEAs at a rate and characteristics mentioned. In this context, to meet the expected outcomes, the following Research and Development (R&D) activities should be addressed: the design, development, and construction of a prototype production line for MEAs, which will be tested in a relevant industrial environment to validate its performance, scalability, and ability to meet the required manufacturing specifications. Here under a detailed activities that need to be included:

  • Innovative up-scaling of processes (continuous production, batch production) and processes based on outcomes of previous and current research projects (MAMA-MEA[4], VOLUMETRIQ[5], NIMPHEA[6]). Addressing new techniques or innovative approaches should be considered if needed on the production line to fill the gap with previously developed processes;
  • Development of known processes and innovative processes (e.g. ink-jet, spray, electrospray, slot-die coating, screen-printing) for large scale catalyst and/or microporous layer deposition. Large scale should be applied to MEAs active area relevant for the large-size unit cell of the applications considered (> 200 cm2) and high-volume production as indicated above (10000 m2/year);
  • Development of methods to produce optimised large size (scale-1 for the application) MEAs and high-quality interfaces (e.g. layer-to-layer manufacturing, efficient assembling and bonding of components, additive manufacturing);
  • Demonstrate the technology at scale compatible with high volume and high yield, considering challenges from an industrialisation perspective (automated process, reduced processing steps at the line, end-of-line quality control, flexibility support, design adaptability, versatility, reproducibility). Process monitoring, parts validity and control means should also be evaluated on several parts at scale;
  • In-line quality control considering relevant parameters related to manufacturing targets and MEAs specifications (such as but not limited to scrap rate, catalyst loading, catalyst-coated membrane thickness…);
  • The prototype pilot line should be adapted to several raw materials and components (membrane or GDL, catalysts) and able of making different compositions and properties (such as porosity and hydrophobicity).
  • The prototype pilot line operational effectiveness will be validated through its capability of manufacturing several MEAs at scale 1, as requested to achieve the targeted MRL 5.
  • Demonstration of expected operation vs. cost, performance, durability KPIs: representative testing and characterisation of produced MEAs in single cells and small stacks, at technologically relevant scale (active area) and in application-relevant conditions (all heavy-duty transport sectors are targeted) should be undertaken as part of the project;
  • Demonstration of reliable scalability expected vs. cost, performance, durability for the various applications targeted – Assessment of progress vs SoA at beginning of project
  • Application of Design for Sustainability (DfS) principles to maximise potential of recycling processes to recover CRMs and minimise environmental impact and end-of-life;
  • Industrial plan should include life cycle analysis, cost analysis, intellectual property and environmental health action plan.

A cost reduction assessment should also be undertaken at the end of the project highlighting the gains brought by the new concepts developed in the project.

In addition, a fully integrated collect and recycling channel associated to the production line should be described.

Proposals should develop and bring to the market an innovative manufacturing processes of MEAs for PEMFC. The process should demonstrate high production rates in line with the future needs of European fuel cell industries. The produced MEAs should simultaneously perform at relevant KPIs of the PEMFC technology.

Proposals should involve a PEMFC and MEA manufacturer and consider regulatory context as well as safety aspects.

A pilot line should be available at the end of the project with an estimation of its full potential:

  • Capacity: 2000 m²/year (or a projection for a year with higher level of maturity);
  • Scrap rate: 40% (or a projection for a year with higher level of maturity).

Proposals should achieve a membrane electrode assembly production line mature enough to be qualified for industrial standards (e.g. standards depending on the applications targeted by the proposal). To do so, the proposal should include European partnerships with industrials (and their supply chain ecosystem) and academics to work on Life Cycle System Analysis, development and implementation of processes, MRL analysis (with a strong focus on the maturity of the supply chain) and propose a reliable and industry-scalable concept of MEA production. This topic is hence expected to contribute to EU competitiveness and industrial leadership by supporting a European supply chain for fuel cell components.

Consortia are encouraged to explore synergies and cooperation with Made in Europe partnership[7] and the Zero Detect Manufacturing platform[8].

For additional elements applicable to all topics please refer to section 2.2.3.2

Activities are expected to reach TRL 6 by the end of the project - see General Annex B

Activities are expected to start at MRL 3 and achieve MRL 5 by the end of the project - see Call management and general conditions section.

The JU estimates that an EU contribution of maximum EUR 5.00 million would allow these outcomes to be addressed appropriately.

The conditions related to this topic are provided in the chapter 2.2.3.2 of the Clean Hydrogen JU 2025 Annual Work Plan and in the General Annexes to the Horizon Europe Work Programme 2023–2025 which apply mutatis mutandis.

[1] The yield should be calculated comparing the theoretical number of MEA that should be obtained in a defined time period from a given quantity of components (membrane and catalysts) with the actual number of MEA produced during this period.

[2] The scrap rate is calculated by dividing the amount of scrap produced in a given time period by the total amount of MEA produced in that same time period.

[3] The annual production capacity means the annual nominal capacity for a facility, calculated based on operations during the 24 hours of the day for an entire year

[4] https://cordis.europa.eu/project/id/779591

[5] https://cordis.europa.eu/project/id/671465

[6] https://cordis.europa.eu/project/id/101101407

[7] https://www.effra.eu/made-in-europe-state-play/

[8] https://www.zdmp.eu/

Eligibility & Conditions

General conditions

1. Admissibility Conditions: Proposal page limit and layout

described in Annex A and Annex E of the Horizon Europe Work Programme General Annexes.

Proposal page limits and layout: described in Part B of the Application Form available in the Submission System.

Page limit for Innovation Actions: For all Innovation Actions the page limit of the applications are 70 pages.

2. Eligible Countries

described in Annex B of the Work Programme General Annexes.

A number of non-EU/non-Associated Countries that are not automatically eligible for funding have made specific provisions for making funding available for their participants in Horizon Europe projects. See the information in the Horizon Europe Programme Guide.

3. Other Eligibility Conditions

described in Annex B of the Work Programme General Annexes.

Additional eligibility condition: Maximum contribution per topic

For some topics, in line with the Clean Hydrogen JU SRIA, an additional eligibility criterion has been introduced to limit the Clean Hydrogen JU requested contribution mostly for actions performed at high TRL level, including demonstration in real operational environment and with important involvement from industrial stakeholders and/or end users such as public authorities. Such actions are expected to leverage co-funding as commitment from stakeholders. It is of added value that such leverage is shown through the private investment in these specific topics. Therefore, proposals requesting contributions above the amounts specified per each topic below will not be evaluated:

- HORIZON-JU-CLEANH2-2025-01-04: The maximum Clean Hydrogen JU contribution that may be requested is EUR 6.00 million

- HORIZON-JU-CLEANH2-2025-01-06: The maximum Clean Hydrogen JU contribution that may be requested is EUR 8.00 million

- HORIZON-JU-CLEANH2-2025-02-03: The maximum Clean Hydrogen JU contribution that may be requested is EUR 6.00 million

- HORIZON-JU-CLEANH2-2025-04-01: The maximum Clean Hydrogen JU contribution that may be requested is EUR 5.00 million

- HORIZON-JU-CLEANH2-2025-06-01: The maximum Clean Hydrogen JU contribution that may be requested is EUR 20.00 million

- HORIZON-JU-CLEANH2-2025-06-02: The maximum Clean Hydrogen JU contribution that may be requested is EUR 9.00 million



Additional eligibility condition: Membership to Hydrogen Europe / Hydrogen Europe Research

For the topics listed below, in line with the Clean Hydrogen JU SRIA, an additional eligibility criterion has been introduced to ensure that one partner in the consortium is a member of either Hydrogen Europe or Hydrogen Europe Research. This concerns topics targeting actions for large-scale demonstrations, flagship projects and strategic research actions, where the industrial and research partners of the Clean Hydrogen JU are considered to play a key role in accelerating the commercialisation of hydrogen technologies by being closely linked to the Clean Hydrogen JU constituency, which could further ensure full alignment with the SRIA of the JU. This approach shall also ensure the continuity of the work performed within projects funded through the H2020 and FP7, by building up on their experience and consolidating the EU value-chain. In the Call 2025 this applies to: demonstration of efficient electrolysis coupling with variable renewable electricity and/or heat integration, demonstration of innovative hydrogen and solid carbon production from renewable gases/biogenic waste processes, demonstration of scalable ammonia cracking technology, and demonstration of stationary fuel cells in renewable energy communities. This will also apply to the Hydrogen Valley (flagship) topics as they are considered of strategic importance for the European Union ambitions to double the number of Hydrogen Valleys by 2025. For the Hydrogen Valleys topics a large amount of co-investment/cofunding of project participants/beneficiaries including national and regional programmes is expected.

- HORIZON-JU-CLEANH2-2025-01-04

- HORIZON-JU-CLEANH2-2025-01-06

- HORIZON-JU-CLEANH2-2025-02-03

- HORIZON-JU-CLEANH2-2025-04-01

- HORIZON-JU-CLEANH2-2025-06-01

- HORIZON-JU-CLEANH2-2025-06-02

4. Financial and operational capacity and exclusion

described in Annex C of the Work Programme General Annexes.

5a. Evaluation and award: Award criteria, scoring and thresholds

are described in Annex D of the Work Programme General Annexes.

5b. Evaluation and award: Submission and evaluation processes

are described in Annex F of the Work Programme General Annexes and the Online Manual.



STEP (Sovereignty) Seal

For the topics below topics the STEP Seal (so called “Sovereignty Seal” under the STEP Regulation) will be awarded to proposals exceeding all of the evaluation thresholds set out in this Annual Work Programme. The STEP Seal is a label, which aims to increase the visibility of quality projects available for funding and help attract alternative and cumulative funding for quality projects, and simultaneously to provide a potential project pipeline for regional and national programmes

- HORIZON-JU-CLEANH2-2025-01-04

- HORIZON-JU-CLEANH2-2025-01-06

- HORIZON-JU-CLEANH2-2025-02-03

- HORIZON-JU-CLEANH2-2025-04-01

- HORIZON-JU-CLEANH2-2025-06-01

- HORIZON-JU-CLEANH2-2025-06-02

5c. Evaluation and award: Indicative timeline for evaluation and grant agreement

described in Annex F of the Work Programme General Annexes.

6. Legal and financial set-up of the grants

Eligible costs will take the form of a lump sum as defined in the Decision of 7 July 2021 authorising the use of lump sum contributions under the Horizon Europe Programme – the Framework Programme for Research and Innovation (2021-2027) – and in actions under the Research and Training Programme of the European Atomic Energy Community (2021-2025) [[This decision is available on the Funding and Tenders Portal, in the reference documents section for Horizon Europe, under ‘Simplified costs decisions’ or through this link: https://ec.europa.eu/info/funding-tenders/opportunities/docs/2021-2027/horizon/guidance/ls-decision_he_en.pdf]].

described in Annex G of the Work Programme General Annexes.



In addition to the standard provisions, the following specific provisions in the model grant agreement will apply:

1. Lump Sum

This year’s call for proposals will take the form of lump sums as defined in the Decision of 7 July 2021 authorising the use of lump sum contributions under the Horizon Europe Programme – the Framework Programme for Research and Innovation (2021- 2027) – and in actions under the Research and Training Programme of the European Atomic Energy Community (2021-2025).

Lump sums will be used across all topics in the Call 2025.



2. Full capitalised costs for purchases of equipment, infrastructure or other assets purchased specifically for the action

For some topics, in line with the Clean Hydrogen JU SRIA, mostly large-scale demonstrators or flagship projects specific equipment, infrastructure or other assets purchased specifically for the action (or developed as part of the action tasks) can exceptionally be declared as full capitalised costs. This concerns the topics below:

- HORIZON-JU-CLEANH2-2025-01-04

- HORIZON-JU-CLEANH2-2025-01-06

- HORIZON-JU-CLEANH2-2025-02-03

- HORIZON-JU-CLEANH2-2025-04-01

- HORIZON-JU-CLEANH2-2025-06-01

- HORIZON-JU-CLEANH2-2025-06-02



3. Subcontracting

For all topics: an additional obligation regarding subcontracting has been introduced, namely that subcontracted work may only be performed in target countries set out in the call conditions.

The beneficiaries must ensure that the subcontracted work is performed in the countries set out in the call conditions.

The target countries are all Member States of the European Union and all Associated Countries.



4. Intellectual Property Rights (IPR), background and results, access rights and rights of use (article 16 and Annex 5 of the Model Grant Agreement (MGA))

An additional information obligation has been introduced for topics including standardisation activities: ‘Beneficiaries must, up to 4 years after the end of the action, inform the granting authority if the results could reasonably be expected to contribute to European or international standards’. These concerns the topics below:

- HORIZON-JU-CLEANH2-2025-02-01

Specific conditions

described in the chapter 2.2.3.2 of the Clean Hydrogen JU 2025 Annual Work Programme

Support & Resources

Online Manual is your guide on the procedures from proposal submission to managing your grant.

Horizon Europe Programme Guide contains the detailed guidance to the structure, budget and political priorities of Horizon Europe.

Funding & Tenders Portal FAQ – find the answers to most frequently asked questions on submission of proposals, evaluation and grant management.

Research Enquiry Service – ask questions about any aspect of European research in general and the EU Research Framework Programmes in particular.

National Contact Points (NCPs) – get guidance, practical information and assistance on participation in Horizon Europe. There are also NCPs in many non-EU and non-associated countries (‘third-countries’).

Enterprise Europe Network – contact your EEN national contact for advice to businesses with special focus on SMEs. The support includes guidance on the EU research funding.

IT Helpdesk – contact the Funding & Tenders Portal IT helpdesk for questions such as forgotten passwords, access rights and roles, technical aspects of submission of proposals, etc.

European IPR Helpdesk assists you on intellectual property issues.

CEN-CENELEC Research Helpdesk and ETSI Research Helpdesk – the European Standards Organisations advise you how to tackle standardisation in your project proposal.

The European Charter for Researchers and the Code of Conduct for their recruitment – consult the general principles and requirements specifying the roles, responsibilities and entitlements of researchers, employers and funders of researchers.

Partner Search help you find a partner organisation for your proposal.

Latest Updates

Last Changed: August 8, 2025

CALL UPDATE:

An overview of the evaluation results for the call HORIZON-JU-CLEANH2-2025 is now available. More information can be found in this document: FLASH EVALUATION RESULTS

Last Changed: April 24, 2025

CALL UPDATE: PROPOSAL NUMBERS



Call HORIZON-JU-CLEANH2-2025 has closed on the 23/04/2025.

212 proposals have been submitted.



The breakdown per topic is:

RENEWABLE HYDROGEN PRODUCTION

-HORIZON-JU-CLEANH2-2025-01-01: 21 proposals

-HORIZON-JU-CLEANH2-2025-01-02: 10 proposals

-HORIZON-JU-CLEANH2-2025-01-03: 11 proposals

-HORIZON-JU-CLEANH2-2025-01-04: 9 proposals

-HORIZON-JU-CLEANH2-2025-01-05: 8 proposals

-HORIZON-JU-CLEANH2-2025-01-06: 14 proposals

-HORIZON-JU-CLEANH2-2025-01-07: 15 proposals



HYDROGEN STORAGE AND DISTRIBUTION

-HORIZON-JU-CLEANH2-2025-02-01: 9 proposals

-HORIZON-JU-CLEANH2-2025-02-02: 10 proposals

-HORIZON-JU-CLEANH2-2025-02-03: 7 proposals



HYDROGEN END USES: TRANSPORT APPLICATIONS

-HORIZON-JU-CLEANH2-2025-03-01: 9 proposals

-HORIZON-JU-CLEANH2-2025-03-02: 7 proposals

-HORIZON-JU-CLEANH2-2025-03-03: 7 proposals



HYDROGEN END USES: CLEAN HEAT AND POWER

-HORIZON-JU-CLEANH2-2025-04-01: 19 proposals



CROSS-CUTTING

-HORIZON-JU-CLEANH2-2025-05-01: 7 proposals

-HORIZON-JU-CLEANH2-2025-05-02: 8 proposals

-HORIZON-JU-CLEANH2-2025-05-03: 6 proposals



HYDROGEN VALLEYS

-HORIZON-JU-CLEANH2-2025-06-01: 16 proposals

-HORIZON-JU-CLEANH2-2025-06-02: 19 proposals



Evaluation results are expected to be communicated in August 2025.

Last Changed: April 15, 2025

Notice to Applicants (15/04/2025)

Please note that we will no longer be accepting questions regarding the current call for proposals HORIZON-JU-CLEANH2-2025. We appreciate your interest and encourage you to refer to the published documentation for any remaining clarifications.

Last Changed: April 15, 2025

Errata Notice - Topic HORIZON-JU-CLEANH2-2025-01-05

The correct text for topic HORIZON-JU-CLEANH2-2025-01-05 stipulates:

"Furthermore, project results are expected to contribute to the following KPIs, targeted at co-electrolyser scale, specific for three high temperature co-electrolysis technologies: Oxide and Proton conductive Solid Oxide electrolysers (SOEL, PCCEL) and Molten Carbonate Electrolyser (MCE):

Oxide conductive Solid Oxide electrolysers (SOEL)

  • Power to syngas efficiency: 0.9 kWLHV /kWe
  • Degradation in operating conditions: 0.8 %/1000h @1A/cm²
  • Unit cost: 500 €/kW

Proton Conductive Ceramic electrolysers (PCCEL)

  1. Power to syngas efficiency: 0.9 kWLHV/ kWe
  2. Degradation in operating conditions: 0.8 %/1000h @0.75A/cm²
  3. Unit cost: 500 €/kW

Molten Carbonate electrolysers (MCE)

  1. Power to syngas efficiency: 0.93 kWLHV/ kWe
  2. Degradation in operating conditions: 0.5 %/1000h @0.5A/cm²
  3. Unit cost: 500 €/kW

KPIs are defined for the main high temperature co-electrolysis techniques, derived from the SRIA and from results of previous EU funded projects."

Last Changed: April 3, 2025

Errata Notice – Topic Conditions



We appreciate your attention to this information. Please be advised that the Topic Conditions are provided below, as they were not displayed correctly under each topic. These conditions apply to all topics across the entire call.

We kindly ask you to refer to the information below and in the AWP2025 to ensure compliance with the applicable requirements.



General conditions



1. Admissibility Conditions: Proposal page limit and layout

described in Annex A and Annex E of the Horizon Europe Work Programme General Annexes.

Proposal page limits and layout: described in Part B of the Application Form available in the Submission System.

Page limit for Innovation Actions: For all Innovation Actions the page limit of the applications are 70 pages.

2. Eligible Countries 

described in Annex B of the Work Programme General Annexes.

A number of non-EU/non-Associated Countries that are not automatically eligible for funding have made specific provisions for making funding available for their participants in Horizon Europe projects. See the information in the Horizon Europe Programme Guide.

3. Other Eligibility Conditions 

described in Annex B of the Work Programme General Annexes.

Additional eligibility condition: Maximum contribution per topic

For some topics, in line with the Clean Hydrogen JU SRIA, an additional eligibility criterion has been introduced to limit the Clean Hydrogen JU requested contribution mostly for actions performed at high TRL level, including demonstration in real operational environment and with important involvement from industrial stakeholders and/or end users such as public authorities. Such actions are expected to leverage co-funding as commitment from stakeholders. It is of added value that such leverage is shown through the private investment in these specific topics. Therefore, proposals requesting contributions above the amounts specified per each topic below will not be evaluated:

- HORIZON-JU-CLEANH2-2025-01-04: The maximum Clean Hydrogen JU contribution that may be requested is EUR 6.00 million

- HORIZON-JU-CLEANH2-2025-01-06: The maximum Clean Hydrogen JU contribution that may be requested is EUR 8.00 million

- HORIZON-JU-CLEANH2-2025-02-03: The maximum Clean Hydrogen JU contribution that may be requested is EUR 6.00 million

- HORIZON-JU-CLEANH2-2025-04-01: The maximum Clean Hydrogen JU contribution that may be requested is EUR 5.00 million

- HORIZON-JU-CLEANH2-2025-06-01: The maximum Clean Hydrogen JU contribution that may be requested is EUR 20.00 million

- HORIZON-JU-CLEANH2-2025-06-02: The maximum Clean Hydrogen JU contribution that may be requested is EUR 9.00 million



Additional eligibility condition: Membership to Hydrogen Europe / Hydrogen Europe Research

For the topics listed below, in line with the Clean Hydrogen JU SRIA, an additional eligibility criterion has been introduced to ensure that one partner in the consortium is a member of either Hydrogen Europe or Hydrogen Europe Research. This concerns topics targeting actions for large-scale demonstrations, flagship projects and strategic research actions, where the industrial and research partners of the Clean Hydrogen JU are considered to play a key role in accelerating the commercialisation of hydrogen technologies by being closely linked to the Clean Hydrogen JU constituency, which could further ensure full alignment with the SRIA of the JU. This approach shall also ensure the continuity of the work performed within projects funded through the H2020 and FP7, by building up on their experience and consolidating the EU value-chain. In the Call 2025 this applies to: demonstration of efficient electrolysis coupling with variable renewable electricity and/or heat integration, demonstration of innovative hydrogen and solid carbon production from renewable gases/biogenic waste processes, demonstration of scalable ammonia cracking technology, and demonstration of stationary fuel cells in renewable energy communities. This will also apply to the Hydrogen Valley (flagship) topics as they are considered of strategic importance for the European Union ambitions to double the number of Hydrogen Valleys by 2025. For the Hydrogen Valleys topics a large amount of co-investment/cofunding of project participants/beneficiaries including national and regional programmes is expected.

- HORIZON-JU-CLEANH2-2025-01-04

- HORIZON-JU-CLEANH2-2025-01-06

- HORIZON-JU-CLEANH2-2025-02-03

- HORIZON-JU-CLEANH2-2025-04-01

- HORIZON-JU-CLEANH2-2025-06-01

- HORIZON-JU-CLEANH2-2025-06-02

4. Financial and operational capacity and exclusion 

described in Annex C of the Work Programme General Annexes.

5a. Evaluation and award: Award criteria, scoring and thresholds 

are described in Annex D of the Work Programme General Annexes.

5b. Evaluation and award: Submission and evaluation processes 

are described in Annex F of the Work Programme General Annexes and the Online Manual.



STEP (Sovereignty) Seal

For the topics below topics the STEP Seal (so called “Sovereignty Seal” under the STEP Regulation) will be awarded to proposals exceeding all of the evaluation thresholds set out in this Annual Work Programme. The STEP Seal is a label, which aims to increase the visibility of quality projects available for funding and help attract alternative and cumulative funding for quality projects, and simultaneously to provide a potential project pipeline for regional and national programmes

- HORIZON-JU-CLEANH2-2025-01-04

- HORIZON-JU-CLEANH2-2025-01-06

- HORIZON-JU-CLEANH2-2025-02-03

- HORIZON-JU-CLEANH2-2025-04-01

- HORIZON-JU-CLEANH2-2025-06-01

- HORIZON-JU-CLEANH2-2025-06-02

5c. Evaluation and award: Indicative timeline for evaluation and grant agreement 

described in Annex F of the Work Programme General Annexes.

6. Legal and financial set-up of the grants 

Eligible costs will take the form of a lump sum as defined in the Decision of 7 July 2021 authorising the use of lump sum contributions under the Horizon Europe Programme – the Framework Programme for Research and Innovation (2021-2027) – and in actions under the Research and Training Programme of the European Atomic Energy Community (2021-2025) [[This decision is available on the Funding and Tenders Portal, in the reference documents section for Horizon Europe, under ‘Simplified costs decisions’ or through this link: https://ec.europa.eu/info/funding-tenders/opportunities/docs/2021-2027/horizon/guidance/ls-decision_he_en.pdf]].

described in Annex G of the Work Programme General Annexes.



In addition to the standard provisions, the following specific provisions in the model grant agreement will apply:

1. Lump Sum

This year’s call for proposals will take the form of lump sums as defined in the Decision of 7 July 2021 authorising the use of lump sum contributions under the Horizon Europe Programme – the Framework Programme for Research and Innovation (2021- 2027) – and in actions under the Research and Training Programme of the European Atomic Energy Community (2021-2025).

Lump sums will be used across all topics in the Call 2025.



2. Full capitalised costs for purchases of equipment, infrastructure or other assets purchased specifically for the action

For some topics, in line with the Clean Hydrogen JU SRIA, mostly large-scale demonstrators or flagship projects specific equipment, infrastructure or other assets purchased specifically for the action (or developed as part of the action tasks) can exceptionally be declared as full capitalised costs. This concerns the topics below:

- HORIZON-JU-CLEANH2-2025-01-04

- HORIZON-JU-CLEANH2-2025-01-06

- HORIZON-JU-CLEANH2-2025-02-03

- HORIZON-JU-CLEANH2-2025-04-01

- HORIZON-JU-CLEANH2-2025-06-01

- HORIZON-JU-CLEANH2-2025-06-02



3. Subcontracting

For all topics: an additional obligation regarding subcontracting has been introduced, namely that subcontracted work may only be performed in target countries set out in the call conditions.

The beneficiaries must ensure that the subcontracted work is performed in the countries set out in the call conditions.

The target countries are all Member States of the European Union and all Associated Countries.



4. Intellectual Property Rights (IPR), background and results, access rights and rights of use (article 16 and Annex 5 of the Model Grant Agreement (MGA))

An additional information obligation has been introduced for topics including standardisation activities: ‘Beneficiaries must, up to 4 years after the end of the action, inform the granting authority if the results could reasonably be expected to contribute to European or international standards’. These concerns the topics below:

- HORIZON-JU-CLEANH2-2025-02-01

Specific conditions 

 

Documents



Application and evaluation forms and model grant agreement (MGA): 



Application form templates

Application form - Part B (HE CleanH2 RIA, IA)

Application form - Part B (HE CleanH2 CSA)

Evaluation form templates

Standard evaluation form (HE RIA, IA)

Standard evaluation form (HE CSA)

Guidance

HE Programme Guide 

Model Grant Agreements (MGA)

Lump Sum MGA 

Call-specific instructions 

Detailed budget table (HE LS) 

Clean Hydrogen JU - Annual Work Programme 2025 (AWP 2025)

 - AWP 2025

Clean Hydrogen JU - Strategic Research and Innovation Agenda (SRIA) 

- SRIA Clean Hydrogen JU

Lump Sums Guidance

Guidance: "Lump sums - what do I need to know?"

Comprehensive information on lump sum funding in Horizon Europe 

Additional documents: 



HE Main Work Programme 2023–2025 – 1. General Introduction

HE Main Work Programme 2023–2025 – 13. General Annexes

HE Programme Guide

HE Framework Programme 2021/695

HE Specific Programme Decision 2021/764 

EU Financial Regulation 2024/2509

Rules for Legal Entity Validation, LEAR Appointment and Financial Capacity Assessment 

EU Grants AGA — Annotated Model Grant Agreement 

Funding & Tenders Portal Online Manual 

Funding & Tenders Portal Terms and Conditions 

Funding & Tenders Portal Privacy Statement



Last Changed: March 31, 2025

The excel detailed budget table available in the submission system “Download Part B templates” section had outdated values for the SME owner unit cost category.

Today, the issue has been rectified and the template available is the correct version, containing up-to-date values for the SME owner unit cost category.

Please make sure you download and use the correct budget table in your submission.

For the applicants that have already submitted their proposals, please be aware that the system still allows you to edit and re-submit your proposal using the updated excel template.

Last Changed: March 14, 2025

In section "Get support" the Specific FAQ document from call HORIZON-JU-CLEANH2-2025 has been updated

Last Changed: February 20, 2025

In section "Get support" the Specific FAQ document from call HORIZON-JU-CLEANH2-2025 has been updated

Last Changed: January 30, 2025
The submission session is now available for: HORIZON-JU-CLEANH2-2025-05-03, HORIZON-JU-CLEANH2-2025-05-02, HORIZON-JU-CLEANH2-2025-02-01, HORIZON-JU-CLEANH2-2025-03-03, HORIZON-JU-CLEANH2-2025-01-05, HORIZON-JU-CLEANH2-2025-01-01, HORIZON-JU-CLEANH2-2025-02-03, HORIZON-JU-CLEANH2-2025-05-01, HORIZON-JU-CLEANH2-2025-02-02, HORIZON-JU-CLEANH2-2025-06-02, HORIZON-JU-CLEANH2-2025-01-07, HORIZON-JU-CLEANH2-2025-06-01, HORIZON-JU-CLEANH2-2025-03-02, HORIZON-JU-CLEANH2-2025-03-01, HORIZON-JU-CLEANH2-2025-01-02, HORIZON-JU-CLEANH2-2025-04-01, HORIZON-JU-CLEANH2-2025-01-06, HORIZON-JU-CLEANH2-2025-01-04, HORIZON-JU-CLEANH2-2025-01-03
Scalable innovative processes for the production of PEMFC MEAs | Grantalist