Closed

Development of mined, lined rock cavern for gaseous hydrogen storage

HORIZON JU Research and Innovation Actions

Basic Information

Identifier
HORIZON-JU-CLEANH2-2025-02-01
Programme
HORIZON-JU-CLEANH2-2025
Programme Period
2021 - 2027
Status
Closed (31094503)
Opening Date
January 30, 2025
Deadline
April 23, 2025
Deadline Model
single-stage
Budget
€184,500,000
Min Grant Amount
€1,000,000
Max Grant Amount
€1,000,000
Expected Number of Grants
1
Keywords
HORIZON-JU-CLEANH2-2025-02-01HORIZON-JU-CLEANH2-2025Hydrogen

Description

Expected Outcome:

Clean hydrogen is recognised as an energy carrier that will play a major role in the decarbonisation of European energy systems, as it can substitute fossil fuels in hard-to-abate sectors. Several governments and institutions have announced ambitious plans for developing a hydrogen economy. The European Union has notably set a 2030 target of 40 GW of electrolysers producing 10 million tonnes of renewable hydrogen to be added to 10 million tonnes of imported clean hydrogen.

These substantial quantities of hydrogen will require aboveground and underground storage capacities. Notably, underground hydrogen storage will provide a means for fulfilling these large-scale storage needs as it presents advantages in terms of environmental protection, energy security, safety, and economically, in terms of CAPEX (for high storage capacity) and OPEX. Underground storage CAPEX is highly dependent on targeted capacities, operating envelopes (namely required flowrates), available geology, needs for purification, and on storage technologies. However, an estimation of the orders of magnitude for costs is as follows:

  • According to the Clean Hydrogen Partnership project HYSTORIES[1] (2022), storage solutions based on porous reservoirs have an estimated cost of about 20€/kg (+/- 50%) and are only valid for very large quantities, whilst SRIA KPIs (2022) present a target value of 5€/kg in 2030 for porous reservoirs (storage capacity not provided; 120 bar compression);
  • Salt caverns technology costs are estimated at approximately 35€/kg (+/- 50%) and are applicable for moderate to large quantities, whilst SRIA KPIs (2022) present a target value of 30€/kg in 2030 for salt caverns (storage capacity > 3000 tons);
  • Storing hydrogen in mined, lined rock caverns is more difficult to assess as the methodology is not fully understood yet. Initial assessments estimate costs between 250€/kg (large quantities, in very good rock conditions) and 500€/kg (large quantities, in good rock conditions). However, costs could be both higher or lower, depending on conditions. Nonetheless, these costs remain attractive when compared to costs for surface storage techniques while also addressing concerns that are present for such techniques (e.g. safety, security, etc.).

Whether these storage capacities will be scattered or centralised remains an open question, but many analysts consider that a variety of storage unit sizes will be required including large and centralised storage.

Salt caverns or porous geological traps offer possibilities for massive hydrogen storage needs as a more cost-effective large-scale hydrogen storage solution. However, applications are limited to locations with suitable geology. In the EU, the number of such locations is limited. Thus, for regions without suitable geology, mined, lined rock caverns may be considered as a suitable technological solution for gas and liquid storage.

The design and safe operation of European hydrogen storage in mined, lined rock caverns requires the development of shared, dedicated standards and guidelines. Amongst the challenges are the choice of a hydrogen-compatible liner material (e.g. steel), the behavior of this material in cycle fatigue[2] situations, the selection of optimised concrete or other materials to cushion the liner against the rock mass and protect it from the effects of the environmental degradation (e.g. corrosion), and other potential impacts, and an understanding of how varying geological lithologies will interact with the cyclical pressure differences. Steel is likely to be chosen for the liner based on lessons learned from manufacturing, installation, and operation processes. However, other materials may also be explored and compared to steel.

Understanding the impact of constructing new caverns as opposed to utilising previously constructed caverns on environment, safety, energy security, and economics is also a topic of interest.

Project results are expected to contribute to all the following expected outcomes:

  • Generate knowledge on the mechanical behaviour of a complex liner (concrete, steel, etc.) in combination with the geomechanical behaviour of the surrounding rock for a mined, lined rock cavern subject to cycling conditions and natural hazards (e.g., earthquakes);
  • Provide design principles and operation envelopes to be used by decision makers when assessing CAPEX and OPEX of mined, lined rock caverns in various conditions (rock mass quality, commercial needs, accessibility, security considerations, etc.);
  • Make hydrogen storage systems that are fit for purpose and that can reduce the cost and improve the efficiency of hydrogen supply across Europe available to industry;
  • Facilitate international collaborations to generate and apply knowledge that can improve underground hydrogen storage operations that contribute to hydrogen sustainability and reduce associated costs;
  • Contribute to maintaining European leadership for large-scale hydrogen storage solutions, with particular focus on assessing the opportunities to understand what makes a previously built cavern best suited for purpose, as well as to understand the dynamics of building mined, lined rock caverns in a diverse set of potential geological lithologies (e.g. gneiss, granite, carbonates, sandstones, basalts). Furthermore, identify and define which geological, geotechnical, and hydrological parameters are best suited for large-scale underground hydrogen storage;
  • Provide replication tools of the methodologies developed and demonstrated in the project in sites in other European regions with different subsurface (and operational) characteristics, ensuring an exhaustive coverage of the different European sites’ specifics;
  • Motivate technical and economic revitalisation of areas with abandoned and/or underutilised cavern infrastructure (e.g. tunnels, natural gas caverns, mines, etc.) in Europe.

Project results are expected to contribute to the following objectives (KPIs of the Clean Hydrogen JU SRIA are not applicable as such):

  • Undertake research activities on underground storage to validate the performance in different geologies, to identify better and more cost-effective materials and to encourage improved designs;
  • Support the development of Regulations Codes and Standards (RCS) for hydrogen technologies and applications, focusing on standards for assessing the life span of a mined, lined rock cavern for hydrogen storage;
  • Organise safety, Pre-Normative Research (PNR) and RCS workshops.
Scope:

The primary challenge to the integrity of a mined, lined rock cavern used for hydrogen storage is the cyclical fatigue, within which hydrogen embrittlement can play a role.

Cyclic strains are induced by the loading/unloading of gas in combination with the confining pressure exerted by the surrounding geological and hydrological environment. These strains can be significant enough to cause plastic deformation of the liner. Additionally, the operational cycling conditions leads to liner (e.g. steel, concrete, etc.) fatigue in addition to having an impact on the surrounding rock mass itself. This fatigue is known as “low-cycle fatigue” (large strain, limited number of cycles).

Proposals should address the technical challenges stemming from combining large strains, fatigue conditions, and hydrogen service on the liner, the surrounding concrete, and the encompassing rock masses. Therefore, industrial development of this concept for hydrogen storage requires studies, tests and a combination of laboratory and field demonstrations.

This topic focuses exclusively on gaseous hydrogen – liquid hydrogen is not considered because of its extremely low temperature requirements.

To overcome the gaps mentioned above, proposals should address the following:

  • Generate knowledge of steel behaviour when subject to cycling conditions in hydrogen environment under a range of operational demands. This may include simulations based on rupture mechanics, fracture propagation, plasticity theory, etc. This should also include validation by testing;
  • Generate knowledge on the corrosion of steel over time including the potential for crevice corrosion and pitting that could result in failure. Damage resulting from H2 embrittlement, or impurities within the H2 of the steel liner may also be considered. This includes knowledge generation on hydrogen quality after storage and withdrawal from the mined, lined rock cavern. This may include hydrogen analysis under simulated cavern conditions in the laboratory using material from the lined rock cavern in the test reactor or by testing gas samples from a field demonstration;
  • Generate knowledge on appropriate concrete compositions for cycle fatigue under a range of operational demands, as well as to best protect the integrity of both the steel liner and the surrounding rock mass. Alternative binders to Ordinary Portland Cement should be considered, to improve the environmental footprint while creating a concrete with higher durability. This may include simulations on fracture propagation, porosity/permeability analyses, as well as laboratory and/or field testing;
  • Design the concrete buffer slurry ensuring that it is designed to be space filling in such a way that it does not introduce stress/strain concentrations. It will likely require high pumpability, alongside good self-compacting properties with high gravitational stability. The use of expanding agents in the concrete mix may be considered through testing, to improve space filling properties and potentially pre-stress the steel liner;
  • Generate knowledge on how variations in geological conditions (e.g. lithology, depth, stress, temperature, etc.) impact both the short- and long-term performance of the storage site. This may include complex numerical simulations of the full storage system, taking into account fracture generation and propagation, fatigue, etc., as well as analogue modeling in the laboratory and/or field testing in a variety of representative geological conditions;
  • Provide guidelines for the selection of steel grades (including welds) for hydrogen services in mined, lined rock caverns. This may include simulations and testing. Challenges associated with welds including potential damage due to the presence of residual stresses and heterogenous microstructures may be considered;
  • Develop recommendations for a standardised design for new mined, lined rock caverns, and best practices for converting existing caverns for hydrogen storage. This design should include underground and aboveground installations dedicated to the storage activity (hydrogen treatment, compression, piping, metering). Connecting lines between the cavern and the aboveground installations should also be covered. Additionally, it is important to consider the impact of natural hazards (e.g. earthquakes) on the entire system (e.g. steel liner, concrete, rock mass, etc.);
  • Understanding potential monitoring methods, including the storage site and surrounding rock mass, should be considered. Ideally, any field testing carried out would include various potential monitoring methods to understand advantages and disadvantages of each approach. Monitoring methods should be able to able to indicate potential failure, as well as other changes within the mined, lined rock cavern storage system (i.e. steel liner, concrete, rock mass, etc.);
  • Ascertain the design through a comprehensive set of simulations. A physical proof of concept (POC) should also be proposed. The parameters for the POC should be ascertained through a combination of numerical modelling, and laboratory testing. The proposal for a POC may be either or a combination of 1) an above ground test that could be utilised to explore the impact of cycling hydrogen within a storage container on the various non-subsurface components (e.g., steel, concrete) and/or 2) a series of tests designed to understand the impact of different geological conditions. Other POC approaches can be proposed provided they significantly improve the level of confidence in the concept;
  • Define construction methods for a mined, lined rock cavern;
  • Define cavern acceptance test procedure of the mined, lined rock cavern with a focus on how geological uncertainty may impact this;
  • Provide a comprehensive risk analysis covering construction, operation, and geomechanical risks taking into account an understanding of the economic, environmental, energy security, and safety considerations;
  • Define guidelines/protocols to support Storage System Operators (SSOs) in the identification and management of risk associated to the storage of hydrogen in mined, lined rock caverns. The guidelines should also propose a fast-track procedure which will allow the SSOs to have a preliminary qualitative assessment of the hydrogen storage feasibility, considering the main relevant factors, as well as assist SSOs in the identification of the optimum storage sites including preferential geological/hydrological conditions; These guidelines should be seen as replication tools of the methodologies developed and demonstrated in the project in sites in other European regions with different subsurface (and operational) characteristics, ensuring an exhaustive coverage of the different European sites’ specifics;
  • Develop techno-economic analyses considering the application of this large-scale solution in a number of different use-case studies including dynamic simulations. Possibilities include, but are not limited to: 1) on-grid applications where mined, lined rock caverns support the EU hydrogen grids in transporting and managing the daily intermittent (e.g., solar, wind) hydrogen production, 2) off-grid applications, where the storage solution is directly connected to an end-user (e.g., industrial use cases, maritime transportation, etc.) and its hydrogen demand, 3) hybrid solutions wherein temporary hydrogen storage may be beneficial, but that use by the grid may also be beneficial (e.g., integrated renewable energy systems).

Building on the results of previous activities, proposals should, as relevant, provide recommendations and dissemination for updated and/or developing new standards at EU and international levels. Projects are encouraged to involve the relevant standardization bodies, for example through liaison organisations[3]. In addition, the outcomes of, but not only, project MefHySto[4], supported by the under the EURAMET research programme, maybe of relevance.

For additional elements applicable to all topics please refer to section 2.2.3.2

Activities are expected to start at TRL 3 and achieve TRL 5 by the end of the project - see General Annex B.

The JU estimates that an EU contribution of maximum EUR 5.00 million would allow these outcomes to be addressed appropriately.

The conditions related to this topic are provided in the chapter 2.2.3.2 of the Clean Hydrogen JU 2025 Annual Work Plan and in the General Annexes to the Horizon Europe Work Programme 2023–2025 which apply mutatis mutandis.

[1] https://cordis.europa.eu/project/id/101007176

[2] Understood as material fatigue under a range of operational demands

[3] https://www.cencenelec.eu/media/Guides/CEN-CLC/cenclcguide25.pdf

[4] Metrology for Advanced Hydrogen Storage Solutions, https://www.euramet.org/european-metrology-networks/energy-gases/activities-impact/projects/project-details/project/metrology-for-advanced-hydrogen-storage-solutions This project has developed standards-based solutions to support the development of advanced hydrogen storage technologies.

Eligibility & Conditions

General conditions

1. Admissibility Conditions: Proposal page limit and layout

described in Annex A and Annex E of the Horizon Europe Work Programme General Annexes.

Proposal page limits and layout: described in Part B of the Application Form available in the Submission System.

Page limit for Innovation Actions: For all Innovation Actions the page limit of the applications are 70 pages.

2. Eligible Countries

described in Annex B of the Work Programme General Annexes.

A number of non-EU/non-Associated Countries that are not automatically eligible for funding have made specific provisions for making funding available for their participants in Horizon Europe projects. See the information in the Horizon Europe Programme Guide.

3. Other Eligibility Conditions

described in Annex B of the Work Programme General Annexes.

Additional eligibility condition: Maximum contribution per topic

For some topics, in line with the Clean Hydrogen JU SRIA, an additional eligibility criterion has been introduced to limit the Clean Hydrogen JU requested contribution mostly for actions performed at high TRL level, including demonstration in real operational environment and with important involvement from industrial stakeholders and/or end users such as public authorities. Such actions are expected to leverage co-funding as commitment from stakeholders. It is of added value that such leverage is shown through the private investment in these specific topics. Therefore, proposals requesting contributions above the amounts specified per each topic below will not be evaluated:

- HORIZON-JU-CLEANH2-2025-01-04: The maximum Clean Hydrogen JU contribution that may be requested is EUR 6.00 million

- HORIZON-JU-CLEANH2-2025-01-06: The maximum Clean Hydrogen JU contribution that may be requested is EUR 8.00 million

- HORIZON-JU-CLEANH2-2025-02-03: The maximum Clean Hydrogen JU contribution that may be requested is EUR 6.00 million

- HORIZON-JU-CLEANH2-2025-04-01: The maximum Clean Hydrogen JU contribution that may be requested is EUR 5.00 million

- HORIZON-JU-CLEANH2-2025-06-01: The maximum Clean Hydrogen JU contribution that may be requested is EUR 20.00 million

- HORIZON-JU-CLEANH2-2025-06-02: The maximum Clean Hydrogen JU contribution that may be requested is EUR 9.00 million



Additional eligibility condition: Membership to Hydrogen Europe / Hydrogen Europe Research

For the topics listed below, in line with the Clean Hydrogen JU SRIA, an additional eligibility criterion has been introduced to ensure that one partner in the consortium is a member of either Hydrogen Europe or Hydrogen Europe Research. This concerns topics targeting actions for large-scale demonstrations, flagship projects and strategic research actions, where the industrial and research partners of the Clean Hydrogen JU are considered to play a key role in accelerating the commercialisation of hydrogen technologies by being closely linked to the Clean Hydrogen JU constituency, which could further ensure full alignment with the SRIA of the JU. This approach shall also ensure the continuity of the work performed within projects funded through the H2020 and FP7, by building up on their experience and consolidating the EU value-chain. In the Call 2025 this applies to: demonstration of efficient electrolysis coupling with variable renewable electricity and/or heat integration, demonstration of innovative hydrogen and solid carbon production from renewable gases/biogenic waste processes, demonstration of scalable ammonia cracking technology, and demonstration of stationary fuel cells in renewable energy communities. This will also apply to the Hydrogen Valley (flagship) topics as they are considered of strategic importance for the European Union ambitions to double the number of Hydrogen Valleys by 2025. For the Hydrogen Valleys topics a large amount of co-investment/cofunding of project participants/beneficiaries including national and regional programmes is expected.

- HORIZON-JU-CLEANH2-2025-01-04

- HORIZON-JU-CLEANH2-2025-01-06

- HORIZON-JU-CLEANH2-2025-02-03

- HORIZON-JU-CLEANH2-2025-04-01

- HORIZON-JU-CLEANH2-2025-06-01

- HORIZON-JU-CLEANH2-2025-06-02

4. Financial and operational capacity and exclusion

described in Annex C of the Work Programme General Annexes.

5a. Evaluation and award: Award criteria, scoring and thresholds

are described in Annex D of the Work Programme General Annexes.

5b. Evaluation and award: Submission and evaluation processes

are described in Annex F of the Work Programme General Annexes and the Online Manual.



STEP (Sovereignty) Seal

For the topics below topics the STEP Seal (so called “Sovereignty Seal” under the STEP Regulation) will be awarded to proposals exceeding all of the evaluation thresholds set out in this Annual Work Programme. The STEP Seal is a label, which aims to increase the visibility of quality projects available for funding and help attract alternative and cumulative funding for quality projects, and simultaneously to provide a potential project pipeline for regional and national programmes

- HORIZON-JU-CLEANH2-2025-01-04

- HORIZON-JU-CLEANH2-2025-01-06

- HORIZON-JU-CLEANH2-2025-02-03

- HORIZON-JU-CLEANH2-2025-04-01

- HORIZON-JU-CLEANH2-2025-06-01

- HORIZON-JU-CLEANH2-2025-06-02

5c. Evaluation and award: Indicative timeline for evaluation and grant agreement

described in Annex F of the Work Programme General Annexes.

6. Legal and financial set-up of the grants

Eligible costs will take the form of a lump sum as defined in the Decision of 7 July 2021 authorising the use of lump sum contributions under the Horizon Europe Programme – the Framework Programme for Research and Innovation (2021-2027) – and in actions under the Research and Training Programme of the European Atomic Energy Community (2021-2025) [[This decision is available on the Funding and Tenders Portal, in the reference documents section for Horizon Europe, under ‘Simplified costs decisions’ or through this link: https://ec.europa.eu/info/funding-tenders/opportunities/docs/2021-2027/horizon/guidance/ls-decision_he_en.pdf]].

described in Annex G of the Work Programme General Annexes.



In addition to the standard provisions, the following specific provisions in the model grant agreement will apply:

1. Lump Sum

This year’s call for proposals will take the form of lump sums as defined in the Decision of 7 July 2021 authorising the use of lump sum contributions under the Horizon Europe Programme – the Framework Programme for Research and Innovation (2021- 2027) – and in actions under the Research and Training Programme of the European Atomic Energy Community (2021-2025).

Lump sums will be used across all topics in the Call 2025.



2. Full capitalised costs for purchases of equipment, infrastructure or other assets purchased specifically for the action

For some topics, in line with the Clean Hydrogen JU SRIA, mostly large-scale demonstrators or flagship projects specific equipment, infrastructure or other assets purchased specifically for the action (or developed as part of the action tasks) can exceptionally be declared as full capitalised costs. This concerns the topics below:

- HORIZON-JU-CLEANH2-2025-01-04

- HORIZON-JU-CLEANH2-2025-01-06

- HORIZON-JU-CLEANH2-2025-02-03

- HORIZON-JU-CLEANH2-2025-04-01

- HORIZON-JU-CLEANH2-2025-06-01

- HORIZON-JU-CLEANH2-2025-06-02



3. Subcontracting

For all topics: an additional obligation regarding subcontracting has been introduced, namely that subcontracted work may only be performed in target countries set out in the call conditions.

The beneficiaries must ensure that the subcontracted work is performed in the countries set out in the call conditions.

The target countries are all Member States of the European Union and all Associated Countries.



4. Intellectual Property Rights (IPR), background and results, access rights and rights of use (article 16 and Annex 5 of the Model Grant Agreement (MGA))

An additional information obligation has been introduced for topics including standardisation activities: ‘Beneficiaries must, up to 4 years after the end of the action, inform the granting authority if the results could reasonably be expected to contribute to European or international standards’. These concerns the topics below:

- HORIZON-JU-CLEANH2-2025-02-01

Specific conditions

described in the chapter 2.2.3.2 of the Clean Hydrogen JU 2025 Annual Work Programme

Support & Resources

Online Manual is your guide on the procedures from proposal submission to managing your grant.

Horizon Europe Programme Guide contains the detailed guidance to the structure, budget and political priorities of Horizon Europe.

Funding & Tenders Portal FAQ – find the answers to most frequently asked questions on submission of proposals, evaluation and grant management.

Research Enquiry Service – ask questions about any aspect of European research in general and the EU Research Framework Programmes in particular.

National Contact Points (NCPs) – get guidance, practical information and assistance on participation in Horizon Europe. There are also NCPs in many non-EU and non-associated countries (‘third-countries’).

Enterprise Europe Network – contact your EEN national contact for advice to businesses with special focus on SMEs. The support includes guidance on the EU research funding.

IT Helpdesk – contact the Funding & Tenders Portal IT helpdesk for questions such as forgotten passwords, access rights and roles, technical aspects of submission of proposals, etc.

European IPR Helpdesk assists you on intellectual property issues.

CEN-CENELEC Research Helpdesk and ETSI Research Helpdesk – the European Standards Organisations advise you how to tackle standardisation in your project proposal.

The European Charter for Researchers and the Code of Conduct for their recruitment – consult the general principles and requirements specifying the roles, responsibilities and entitlements of researchers, employers and funders of researchers.

Partner Search help you find a partner organisation for your proposal.

Latest Updates

Last Changed: August 8, 2025

CALL UPDATE:

An overview of the evaluation results for the call HORIZON-JU-CLEANH2-2025 is now available. More information can be found in this document: FLASH EVALUATION RESULTS

Last Changed: April 24, 2025

CALL UPDATE: PROPOSAL NUMBERS



Call HORIZON-JU-CLEANH2-2025 has closed on the 23/04/2025.

212 proposals have been submitted.



The breakdown per topic is:

RENEWABLE HYDROGEN PRODUCTION

-HORIZON-JU-CLEANH2-2025-01-01: 21 proposals

-HORIZON-JU-CLEANH2-2025-01-02: 10 proposals

-HORIZON-JU-CLEANH2-2025-01-03: 11 proposals

-HORIZON-JU-CLEANH2-2025-01-04: 9 proposals

-HORIZON-JU-CLEANH2-2025-01-05: 8 proposals

-HORIZON-JU-CLEANH2-2025-01-06: 14 proposals

-HORIZON-JU-CLEANH2-2025-01-07: 15 proposals



HYDROGEN STORAGE AND DISTRIBUTION

-HORIZON-JU-CLEANH2-2025-02-01: 9 proposals

-HORIZON-JU-CLEANH2-2025-02-02: 10 proposals

-HORIZON-JU-CLEANH2-2025-02-03: 7 proposals



HYDROGEN END USES: TRANSPORT APPLICATIONS

-HORIZON-JU-CLEANH2-2025-03-01: 9 proposals

-HORIZON-JU-CLEANH2-2025-03-02: 7 proposals

-HORIZON-JU-CLEANH2-2025-03-03: 7 proposals



HYDROGEN END USES: CLEAN HEAT AND POWER

-HORIZON-JU-CLEANH2-2025-04-01: 19 proposals



CROSS-CUTTING

-HORIZON-JU-CLEANH2-2025-05-01: 7 proposals

-HORIZON-JU-CLEANH2-2025-05-02: 8 proposals

-HORIZON-JU-CLEANH2-2025-05-03: 6 proposals



HYDROGEN VALLEYS

-HORIZON-JU-CLEANH2-2025-06-01: 16 proposals

-HORIZON-JU-CLEANH2-2025-06-02: 19 proposals



Evaluation results are expected to be communicated in August 2025.

Last Changed: April 15, 2025

Notice to Applicants (15/04/2025)

Please note that we will no longer be accepting questions regarding the current call for proposals HORIZON-JU-CLEANH2-2025. We appreciate your interest and encourage you to refer to the published documentation for any remaining clarifications.

Last Changed: April 15, 2025

Errata Notice - Topic HORIZON-JU-CLEANH2-2025-01-05

The correct text for topic HORIZON-JU-CLEANH2-2025-01-05 stipulates:

"Furthermore, project results are expected to contribute to the following KPIs, targeted at co-electrolyser scale, specific for three high temperature co-electrolysis technologies: Oxide and Proton conductive Solid Oxide electrolysers (SOEL, PCCEL) and Molten Carbonate Electrolyser (MCE):

Oxide conductive Solid Oxide electrolysers (SOEL)

  • Power to syngas efficiency: 0.9 kWLHV /kWe
  • Degradation in operating conditions: 0.8 %/1000h @1A/cm²
  • Unit cost: 500 €/kW

Proton Conductive Ceramic electrolysers (PCCEL)

  1. Power to syngas efficiency: 0.9 kWLHV/ kWe
  2. Degradation in operating conditions: 0.8 %/1000h @0.75A/cm²
  3. Unit cost: 500 €/kW

Molten Carbonate electrolysers (MCE)

  1. Power to syngas efficiency: 0.93 kWLHV/ kWe
  2. Degradation in operating conditions: 0.5 %/1000h @0.5A/cm²
  3. Unit cost: 500 €/kW

KPIs are defined for the main high temperature co-electrolysis techniques, derived from the SRIA and from results of previous EU funded projects."

Last Changed: April 3, 2025

Errata Notice – Topic Conditions



We appreciate your attention to this information. Please be advised that the Topic Conditions are provided below, as they were not displayed correctly under each topic. These conditions apply to all topics across the entire call.

We kindly ask you to refer to the information below and in the AWP2025 to ensure compliance with the applicable requirements.



General conditions



1. Admissibility Conditions: Proposal page limit and layout

described in Annex A and Annex E of the Horizon Europe Work Programme General Annexes.

Proposal page limits and layout: described in Part B of the Application Form available in the Submission System.

Page limit for Innovation Actions: For all Innovation Actions the page limit of the applications are 70 pages.

2. Eligible Countries 

described in Annex B of the Work Programme General Annexes.

A number of non-EU/non-Associated Countries that are not automatically eligible for funding have made specific provisions for making funding available for their participants in Horizon Europe projects. See the information in the Horizon Europe Programme Guide.

3. Other Eligibility Conditions 

described in Annex B of the Work Programme General Annexes.

Additional eligibility condition: Maximum contribution per topic

For some topics, in line with the Clean Hydrogen JU SRIA, an additional eligibility criterion has been introduced to limit the Clean Hydrogen JU requested contribution mostly for actions performed at high TRL level, including demonstration in real operational environment and with important involvement from industrial stakeholders and/or end users such as public authorities. Such actions are expected to leverage co-funding as commitment from stakeholders. It is of added value that such leverage is shown through the private investment in these specific topics. Therefore, proposals requesting contributions above the amounts specified per each topic below will not be evaluated:

- HORIZON-JU-CLEANH2-2025-01-04: The maximum Clean Hydrogen JU contribution that may be requested is EUR 6.00 million

- HORIZON-JU-CLEANH2-2025-01-06: The maximum Clean Hydrogen JU contribution that may be requested is EUR 8.00 million

- HORIZON-JU-CLEANH2-2025-02-03: The maximum Clean Hydrogen JU contribution that may be requested is EUR 6.00 million

- HORIZON-JU-CLEANH2-2025-04-01: The maximum Clean Hydrogen JU contribution that may be requested is EUR 5.00 million

- HORIZON-JU-CLEANH2-2025-06-01: The maximum Clean Hydrogen JU contribution that may be requested is EUR 20.00 million

- HORIZON-JU-CLEANH2-2025-06-02: The maximum Clean Hydrogen JU contribution that may be requested is EUR 9.00 million



Additional eligibility condition: Membership to Hydrogen Europe / Hydrogen Europe Research

For the topics listed below, in line with the Clean Hydrogen JU SRIA, an additional eligibility criterion has been introduced to ensure that one partner in the consortium is a member of either Hydrogen Europe or Hydrogen Europe Research. This concerns topics targeting actions for large-scale demonstrations, flagship projects and strategic research actions, where the industrial and research partners of the Clean Hydrogen JU are considered to play a key role in accelerating the commercialisation of hydrogen technologies by being closely linked to the Clean Hydrogen JU constituency, which could further ensure full alignment with the SRIA of the JU. This approach shall also ensure the continuity of the work performed within projects funded through the H2020 and FP7, by building up on their experience and consolidating the EU value-chain. In the Call 2025 this applies to: demonstration of efficient electrolysis coupling with variable renewable electricity and/or heat integration, demonstration of innovative hydrogen and solid carbon production from renewable gases/biogenic waste processes, demonstration of scalable ammonia cracking technology, and demonstration of stationary fuel cells in renewable energy communities. This will also apply to the Hydrogen Valley (flagship) topics as they are considered of strategic importance for the European Union ambitions to double the number of Hydrogen Valleys by 2025. For the Hydrogen Valleys topics a large amount of co-investment/cofunding of project participants/beneficiaries including national and regional programmes is expected.

- HORIZON-JU-CLEANH2-2025-01-04

- HORIZON-JU-CLEANH2-2025-01-06

- HORIZON-JU-CLEANH2-2025-02-03

- HORIZON-JU-CLEANH2-2025-04-01

- HORIZON-JU-CLEANH2-2025-06-01

- HORIZON-JU-CLEANH2-2025-06-02

4. Financial and operational capacity and exclusion 

described in Annex C of the Work Programme General Annexes.

5a. Evaluation and award: Award criteria, scoring and thresholds 

are described in Annex D of the Work Programme General Annexes.

5b. Evaluation and award: Submission and evaluation processes 

are described in Annex F of the Work Programme General Annexes and the Online Manual.



STEP (Sovereignty) Seal

For the topics below topics the STEP Seal (so called “Sovereignty Seal” under the STEP Regulation) will be awarded to proposals exceeding all of the evaluation thresholds set out in this Annual Work Programme. The STEP Seal is a label, which aims to increase the visibility of quality projects available for funding and help attract alternative and cumulative funding for quality projects, and simultaneously to provide a potential project pipeline for regional and national programmes

- HORIZON-JU-CLEANH2-2025-01-04

- HORIZON-JU-CLEANH2-2025-01-06

- HORIZON-JU-CLEANH2-2025-02-03

- HORIZON-JU-CLEANH2-2025-04-01

- HORIZON-JU-CLEANH2-2025-06-01

- HORIZON-JU-CLEANH2-2025-06-02

5c. Evaluation and award: Indicative timeline for evaluation and grant agreement 

described in Annex F of the Work Programme General Annexes.

6. Legal and financial set-up of the grants 

Eligible costs will take the form of a lump sum as defined in the Decision of 7 July 2021 authorising the use of lump sum contributions under the Horizon Europe Programme – the Framework Programme for Research and Innovation (2021-2027) – and in actions under the Research and Training Programme of the European Atomic Energy Community (2021-2025) [[This decision is available on the Funding and Tenders Portal, in the reference documents section for Horizon Europe, under ‘Simplified costs decisions’ or through this link: https://ec.europa.eu/info/funding-tenders/opportunities/docs/2021-2027/horizon/guidance/ls-decision_he_en.pdf]].

described in Annex G of the Work Programme General Annexes.



In addition to the standard provisions, the following specific provisions in the model grant agreement will apply:

1. Lump Sum

This year’s call for proposals will take the form of lump sums as defined in the Decision of 7 July 2021 authorising the use of lump sum contributions under the Horizon Europe Programme – the Framework Programme for Research and Innovation (2021- 2027) – and in actions under the Research and Training Programme of the European Atomic Energy Community (2021-2025).

Lump sums will be used across all topics in the Call 2025.



2. Full capitalised costs for purchases of equipment, infrastructure or other assets purchased specifically for the action

For some topics, in line with the Clean Hydrogen JU SRIA, mostly large-scale demonstrators or flagship projects specific equipment, infrastructure or other assets purchased specifically for the action (or developed as part of the action tasks) can exceptionally be declared as full capitalised costs. This concerns the topics below:

- HORIZON-JU-CLEANH2-2025-01-04

- HORIZON-JU-CLEANH2-2025-01-06

- HORIZON-JU-CLEANH2-2025-02-03

- HORIZON-JU-CLEANH2-2025-04-01

- HORIZON-JU-CLEANH2-2025-06-01

- HORIZON-JU-CLEANH2-2025-06-02



3. Subcontracting

For all topics: an additional obligation regarding subcontracting has been introduced, namely that subcontracted work may only be performed in target countries set out in the call conditions.

The beneficiaries must ensure that the subcontracted work is performed in the countries set out in the call conditions.

The target countries are all Member States of the European Union and all Associated Countries.



4. Intellectual Property Rights (IPR), background and results, access rights and rights of use (article 16 and Annex 5 of the Model Grant Agreement (MGA))

An additional information obligation has been introduced for topics including standardisation activities: ‘Beneficiaries must, up to 4 years after the end of the action, inform the granting authority if the results could reasonably be expected to contribute to European or international standards’. These concerns the topics below:

- HORIZON-JU-CLEANH2-2025-02-01

Specific conditions 

 

Documents



Application and evaluation forms and model grant agreement (MGA): 



Application form templates

Application form - Part B (HE CleanH2 RIA, IA)

Application form - Part B (HE CleanH2 CSA)

Evaluation form templates

Standard evaluation form (HE RIA, IA)

Standard evaluation form (HE CSA)

Guidance

HE Programme Guide 

Model Grant Agreements (MGA)

Lump Sum MGA 

Call-specific instructions 

Detailed budget table (HE LS) 

Clean Hydrogen JU - Annual Work Programme 2025 (AWP 2025)

 - AWP 2025

Clean Hydrogen JU - Strategic Research and Innovation Agenda (SRIA) 

- SRIA Clean Hydrogen JU

Lump Sums Guidance

Guidance: "Lump sums - what do I need to know?"

Comprehensive information on lump sum funding in Horizon Europe 

Additional documents: 



HE Main Work Programme 2023–2025 – 1. General Introduction

HE Main Work Programme 2023–2025 – 13. General Annexes

HE Programme Guide

HE Framework Programme 2021/695

HE Specific Programme Decision 2021/764 

EU Financial Regulation 2024/2509

Rules for Legal Entity Validation, LEAR Appointment and Financial Capacity Assessment 

EU Grants AGA — Annotated Model Grant Agreement 

Funding & Tenders Portal Online Manual 

Funding & Tenders Portal Terms and Conditions 

Funding & Tenders Portal Privacy Statement



Last Changed: March 31, 2025

The excel detailed budget table available in the submission system “Download Part B templates” section had outdated values for the SME owner unit cost category.

Today, the issue has been rectified and the template available is the correct version, containing up-to-date values for the SME owner unit cost category.

Please make sure you download and use the correct budget table in your submission.

For the applicants that have already submitted their proposals, please be aware that the system still allows you to edit and re-submit your proposal using the updated excel template.

Last Changed: March 14, 2025

In section "Get support" the Specific FAQ document from call HORIZON-JU-CLEANH2-2025 has been updated

Last Changed: February 20, 2025

In section "Get support" the Specific FAQ document from call HORIZON-JU-CLEANH2-2025 has been updated

Last Changed: January 30, 2025
The submission session is now available for: HORIZON-JU-CLEANH2-2025-05-03, HORIZON-JU-CLEANH2-2025-05-02, HORIZON-JU-CLEANH2-2025-02-01, HORIZON-JU-CLEANH2-2025-03-03, HORIZON-JU-CLEANH2-2025-01-05, HORIZON-JU-CLEANH2-2025-01-01, HORIZON-JU-CLEANH2-2025-02-03, HORIZON-JU-CLEANH2-2025-05-01, HORIZON-JU-CLEANH2-2025-02-02, HORIZON-JU-CLEANH2-2025-06-02, HORIZON-JU-CLEANH2-2025-01-07, HORIZON-JU-CLEANH2-2025-06-01, HORIZON-JU-CLEANH2-2025-03-02, HORIZON-JU-CLEANH2-2025-03-01, HORIZON-JU-CLEANH2-2025-01-02, HORIZON-JU-CLEANH2-2025-04-01, HORIZON-JU-CLEANH2-2025-01-06, HORIZON-JU-CLEANH2-2025-01-04, HORIZON-JU-CLEANH2-2025-01-03
Development of mined, lined rock cavern for gaseous hydrogen storage | Grantalist