Closed

Improved lifetime and cost of high-temperature electrolysers by introducing innovative materials and components in stacks and BoP

HORIZON JU Research and Innovation Actions

Basic Information

Identifier
HORIZON-JU-CLEANH2-2025-01-02
Programme
HORIZON-JU-CLEANH2-2025
Programme Period
2021 - 2027
Status
Closed (31094503)
Opening Date
January 30, 2025
Deadline
April 23, 2025
Deadline Model
single-stage
Budget
€184,500,000
Min Grant Amount
€1,000,000
Max Grant Amount
€1,000,000
Expected Number of Grants
1
Keywords
HORIZON-JU-CLEANH2-2025-01-02HORIZON-JU-CLEANH2-2025Hydrogen

Description

Expected Outcome:

Water/steam electrolysis, when coupled with renewables bears the potential of enabling the decarbonisation of hard-to-abate industrial sectors via the introduction of renewable hydrogen. Steam electrolysis technologies such as solid oxide electrolysers (SOELs) and proton conducting ceramic electrolysers (PCCEL) operate at high temperatures and therefore yield high efficiencies.

However, the cost of hydrogen production via electrolysis remains higher than those of other routes, such as steam methane reforming. Therefore, it is paramount that the lifetime and energy densities are maximised and the system integration with BoP components is improved to bring both the CAPEX and the OPEX down, thus resulting in more affordable renewable hydrogen costs for the end-users.

The degradation mechanisms, from which high temperature electrolysers suffer, are mainly tied to the material in their stack such as the electrolyte, electrodes, interconnects, and seals, depending on operation temperature, pressure and thermal cycling; but they can also be related to their surroundings including balance of plant (BoP) components, for instance, and load variation and fluctuation upon connection with the external grid.

Therefore, project results are expected to contribute to the following expected outcomes:

  • Improvements to already conceptualised novel materials including electrocatalysts, electrodes, metallic interconnects, coatings, and seals enabling increased lifetime to the ensemble of both single cells and stacks;
  • Use of advanced manufacturing techniques to tackle issues with interfaces within the cell structure to minimise polarisation;
  • Promote circularity of materials and components, by working on upstream (during manufacturing) and downstream (end of life) recycling, to integrate recycled materials, such as Ni, Co, Ce, La, and others, into the components, addressing the concerns with critical raw materials utilisation and hence strengthening the European hydrogen value chain on high-temperature electrolysers;
  • Improvements to eventual multi-stack configuration to minimise the degradation mechanisms through optimising the control of the different stacks and the interactions between them, as well as BoP architecture;
  • Introduction of accelerated stress test protocols on both single cell and stack levels to assure quality and lifetime of cells, stacks, and ultimately systems, including BoP;
  • Balance of plant configuration that demonstrates satisfying performances at the system level. This includes new stack insulation strategies and materials, hot box systems, improved power electronics, innovative valorisation strategy of waste heat (e.g., for efficient compression or gas purification), and innovative design for multi-stack configuration. This innovative balance of plant configuration will enable to optimise the efficiency of the system’s lifetime and reliability;
  • Paving the way towards European leadership for renewable hydrogen production from high-temperature electrolysis, with enhanced heat integration.

Within this scenario, project results are expected to contribute to the following objectives and 2030 KPIs of the Clean Hydrogen JU SRIA for SOEL and PCCEL, as follows:

SOEL:

  • To reach current densities over 1.2 A/cm2 at thermoneutral voltage;
  • To demonstrate average degradation rates lower than 0.5%/1,000 h or equivalent to 6.4 mV/1,000 h per cell, on thermoneutral voltage;
  • To operate steadily with an electrical demand of < 37 kWh/kg of H2 and a heat demand of < 8 kWh/kg of H2 at nominal capacity at a system level.

PCCEL:

  • To reach current densities over 1.0 A/cm2 at thermoneutral voltage;
  • To demonstrate average degradation[1] rates lower than 0.8%/1,000 h or equivalent to 10.3 mV/1,000 h per cell, on thermoneutral voltage;
  • To operate steadily with an electrical demand of < 40 kWh/kg of H2 and a heat demand of < 10 kWh/kg of H2 at nominal capacity at a system level.
Scope:

The scope of this topic is centred around minimising the effects of degradation to consequently extend the lifetime of high temperature steam electrolysers (HTSE) such as solid oxide electrolysers (SOEL) and proton-conducting ceramic electrolysers (PCCEL). HTSE technology has the potential to achieve a low cost of hydrogen production because of its higher energy efficiency due to the operation at high temperature.

However, because of the latter, degradation mechanisms such as electrocatalyst agglomeration and migration, delamination of electrodes from electrolyte layers, interconnects oxidation, thermal cycling failure and structure cracking for instance of sealings are common sources of lifetime degradation and further reasons for the replacement of components or even full stacks. In addition to that, instability in load due to renewables intermittency or grid fluctuations are also sources of degradation and need to be addressed accordingly.

Moreover, the link between materials improvements and design (of cells, stacks, modules, systems, and balance of plant) should be demonstrated. Electrolysers are supposed to target lifetimes of over 40,000 hours, albeit undergoing long-term calendar tests (> 10,000 hours) is rather impractical, and thereby this sets the scene for accelerated-stress tests (AS-T) and modelling techniques that can predict the lifetime achieved by potential new technologies.

Considering the above-given background, the project should address the following issues:

  • Materials and advanced manufacturing techniques improvements aiming to address the deactivation of electrocatalysts within the fuel electrode, microstructure sintering and interdiffusion between species within the oxygen electrode, degradation of sealing due to long-term high temperature operation, chromium oxidation in interconnect stainless steels and growth of poorly conducting oxide layers between the metallic interconnect plates and the electrodes;
  • Development of circularity by working on upstream and downstream recycling processes, targeting to minimise the utilisation of raw critical materials. In particular, design strategies that allow for facile re-utilisation of half-cell materials, utilisation of manufacturing scrap in the process, as well as the development of materials originating from downstream recycling within the stack;
  • Optimisation of load variation and fluctuation including the electrolysers’ integration with renewable energy sources;
  • Optimisation of BoP components and architectures to minimise their impact on stack degradation and improve overall system performances (e.g. steam generator, power quality from the power electronics components towards the electrolyser plant under Renewable Energy conditions, valorisation of stack heat for hydrogen compression, optimisation of gas purification concept, efficient multi-stack design etc.);
  • Introduction of techniques to understand long-term degradation, such as accelerated-stress tests, and modelling;

Those developments should be validated at the scale of stacks steadily producing a minimum of 20 kW nominal power, within a long-term operation of above 2,000 h. Validation should be compatible with system levels. In this context, innovative BoP components (e.g. power electronics, compressor, gas purification system) may be tested together with the stacks if relevant to validate the innovative system integration. The use of a hardware-in-the-loop approach to simulate the operation of system components that are not part of the targeted development may also be considered.

It is encouraged to find synergies with the ELECTROLIFE[2] project that focuses on a comprehensive understanding of electrolyser degradation mechanisms through testing and modelling. Furthermore, the project proposals should be able to demonstrate how they would go beyond the intentions of the EU-funded projects ELECTRA[3], GAMER[4], Hy-SPIRE[5], and WINNER[6] when it comes to PCCEL materials and stacks, SElySOs[7] regarding the understanding of degradation mechanisms, NOAH2[8] as a benchmark for stacks, LOWCOST-IC[9] when it comes to lowering costs of components, NewSOC[10] on advanced manufacturing, AD ASTRA[11] for accelerated stress tests, REACTT[12] for monitoring and diagnostics of solid oxide electrolysers and PROMETEO[13] that focused on the coupling of solid oxide electrolysers with intermittent renewable sources. To have an electrolyser stack manufacturer involved in the consortium for this topic is encouraged.

Proposals are expected to be able to demonstrate that there is at least an experimental proof-of-concept validated in the laboratory (Technology Readdiness Level (TRL) 3) to be addressed, and detail how the project will achieve the maturity of TRL5 for SOEL technologies and TRL4 for PCCEL by the end of its execution and validate the technology in a relevant environment.

For activities developing test protocols and procedures for the performance and durability assessment of electrolysers and fuel cell components proposals should foresee a collaboration mechanism with the Joint Research Center (JRC)[14] (see section 2.2.4.3 "Collaboration with JRC"), in order to support EU-wide harmonisation. Test activities should adopt the already published EU harmonised testing protocols[15] to benchmark performance and quantify progress at programme level.

For additional elements applicable to all topics please refer to section 2.2.3.2.

Activities are expected to start at TRL 3 and achieve TRL 5 (SOEL) and TRL 4 (PCCEL) by the end of the project - see General Annex B.

The JU estimates that an EU contribution of maximum EUR 4.00 million would allow these outcomes to be addressed appropriately.

The conditions related to this topic are provided in the chapter 2.2.3.2 of the Clean Hydrogen JU 2025 Annual Work Plan and in the General Annexes to the Horizon Europe Work Programme 2023–2025 which apply mutatis mutandis

[1] Degradation under thermo-neutral conditions (@UTN) in per cent loss of production rate (hydrogen power output) at constant efficiency. Note this is a different definition from that of low temperature electrolysis, reflecting the difference in technology. Testing time should be a minimum of 2,000 hours.

[2] https://cordis.europa.eu/project/id/101137802

[3] https://cordis.europa.eu/project/id/621244

[4] https://cordis.europa.eu/project/id/779486

[5] https://cordis.europa.eu/project/id/101137866

[6] https://cordis.europa.eu/project/id/101007165

[7] https://cordis.europa.eu/project/id/671481

[8] https://cordis.europa.eu/project/id/101137600

[9] https://cordis.europa.eu/project/id/826323

[10] https://cordis.europa.eu/project/id/874577

[11] https://cordis.europa.eu/project/id/825027

[12] https://cordis.europa.eu/project/id/101007175

[13] https://cordis.europa.eu/project/id/101007194

[14] https://www.clean-hydrogen.europa.eu/knowledge-management/collaboration-jrc-0_en

[15] https://www.clean-hydrogen.europa.eu/knowledge-management/collaboration-jrc-0/clean-hydrogen-ju-jrc-deliverables_en

Eligibility & Conditions

General conditions

1. Admissibility Conditions: Proposal page limit and layout

described in Annex A and Annex E of the Horizon Europe Work Programme General Annexes.

Proposal page limits and layout: described in Part B of the Application Form available in the Submission System.

Page limit for Innovation Actions: For all Innovation Actions the page limit of the applications are 70 pages.

2. Eligible Countries

described in Annex B of the Work Programme General Annexes.

A number of non-EU/non-Associated Countries that are not automatically eligible for funding have made specific provisions for making funding available for their participants in Horizon Europe projects. See the information in the Horizon Europe Programme Guide.

3. Other Eligibility Conditions

described in Annex B of the Work Programme General Annexes.

Additional eligibility condition: Maximum contribution per topic

For some topics, in line with the Clean Hydrogen JU SRIA, an additional eligibility criterion has been introduced to limit the Clean Hydrogen JU requested contribution mostly for actions performed at high TRL level, including demonstration in real operational environment and with important involvement from industrial stakeholders and/or end users such as public authorities. Such actions are expected to leverage co-funding as commitment from stakeholders. It is of added value that such leverage is shown through the private investment in these specific topics. Therefore, proposals requesting contributions above the amounts specified per each topic below will not be evaluated:

- HORIZON-JU-CLEANH2-2025-01-04: The maximum Clean Hydrogen JU contribution that may be requested is EUR 6.00 million

- HORIZON-JU-CLEANH2-2025-01-06: The maximum Clean Hydrogen JU contribution that may be requested is EUR 8.00 million

- HORIZON-JU-CLEANH2-2025-02-03: The maximum Clean Hydrogen JU contribution that may be requested is EUR 6.00 million

- HORIZON-JU-CLEANH2-2025-04-01: The maximum Clean Hydrogen JU contribution that may be requested is EUR 5.00 million

- HORIZON-JU-CLEANH2-2025-06-01: The maximum Clean Hydrogen JU contribution that may be requested is EUR 20.00 million

- HORIZON-JU-CLEANH2-2025-06-02: The maximum Clean Hydrogen JU contribution that may be requested is EUR 9.00 million



Additional eligibility condition: Membership to Hydrogen Europe / Hydrogen Europe Research

For the topics listed below, in line with the Clean Hydrogen JU SRIA, an additional eligibility criterion has been introduced to ensure that one partner in the consortium is a member of either Hydrogen Europe or Hydrogen Europe Research. This concerns topics targeting actions for large-scale demonstrations, flagship projects and strategic research actions, where the industrial and research partners of the Clean Hydrogen JU are considered to play a key role in accelerating the commercialisation of hydrogen technologies by being closely linked to the Clean Hydrogen JU constituency, which could further ensure full alignment with the SRIA of the JU. This approach shall also ensure the continuity of the work performed within projects funded through the H2020 and FP7, by building up on their experience and consolidating the EU value-chain. In the Call 2025 this applies to: demonstration of efficient electrolysis coupling with variable renewable electricity and/or heat integration, demonstration of innovative hydrogen and solid carbon production from renewable gases/biogenic waste processes, demonstration of scalable ammonia cracking technology, and demonstration of stationary fuel cells in renewable energy communities. This will also apply to the Hydrogen Valley (flagship) topics as they are considered of strategic importance for the European Union ambitions to double the number of Hydrogen Valleys by 2025. For the Hydrogen Valleys topics a large amount of co-investment/cofunding of project participants/beneficiaries including national and regional programmes is expected.

- HORIZON-JU-CLEANH2-2025-01-04

- HORIZON-JU-CLEANH2-2025-01-06

- HORIZON-JU-CLEANH2-2025-02-03

- HORIZON-JU-CLEANH2-2025-04-01

- HORIZON-JU-CLEANH2-2025-06-01

- HORIZON-JU-CLEANH2-2025-06-02

4. Financial and operational capacity and exclusion

described in Annex C of the Work Programme General Annexes.

5a. Evaluation and award: Award criteria, scoring and thresholds

are described in Annex D of the Work Programme General Annexes.

5b. Evaluation and award: Submission and evaluation processes

are described in Annex F of the Work Programme General Annexes and the Online Manual.



STEP (Sovereignty) Seal

For the topics below topics the STEP Seal (so called “Sovereignty Seal” under the STEP Regulation) will be awarded to proposals exceeding all of the evaluation thresholds set out in this Annual Work Programme. The STEP Seal is a label, which aims to increase the visibility of quality projects available for funding and help attract alternative and cumulative funding for quality projects, and simultaneously to provide a potential project pipeline for regional and national programmes

- HORIZON-JU-CLEANH2-2025-01-04

- HORIZON-JU-CLEANH2-2025-01-06

- HORIZON-JU-CLEANH2-2025-02-03

- HORIZON-JU-CLEANH2-2025-04-01

- HORIZON-JU-CLEANH2-2025-06-01

- HORIZON-JU-CLEANH2-2025-06-02

5c. Evaluation and award: Indicative timeline for evaluation and grant agreement

described in Annex F of the Work Programme General Annexes.

6. Legal and financial set-up of the grants

Eligible costs will take the form of a lump sum as defined in the Decision of 7 July 2021 authorising the use of lump sum contributions under the Horizon Europe Programme – the Framework Programme for Research and Innovation (2021-2027) – and in actions under the Research and Training Programme of the European Atomic Energy Community (2021-2025) [[This decision is available on the Funding and Tenders Portal, in the reference documents section for Horizon Europe, under ‘Simplified costs decisions’ or through this link: https://ec.europa.eu/info/funding-tenders/opportunities/docs/2021-2027/horizon/guidance/ls-decision_he_en.pdf]].

described in Annex G of the Work Programme General Annexes.



In addition to the standard provisions, the following specific provisions in the model grant agreement will apply:

1. Lump Sum

This year’s call for proposals will take the form of lump sums as defined in the Decision of 7 July 2021 authorising the use of lump sum contributions under the Horizon Europe Programme – the Framework Programme for Research and Innovation (2021- 2027) – and in actions under the Research and Training Programme of the European Atomic Energy Community (2021-2025).

Lump sums will be used across all topics in the Call 2025.



2. Full capitalised costs for purchases of equipment, infrastructure or other assets purchased specifically for the action

For some topics, in line with the Clean Hydrogen JU SRIA, mostly large-scale demonstrators or flagship projects specific equipment, infrastructure or other assets purchased specifically for the action (or developed as part of the action tasks) can exceptionally be declared as full capitalised costs. This concerns the topics below:

- HORIZON-JU-CLEANH2-2025-01-04

- HORIZON-JU-CLEANH2-2025-01-06

- HORIZON-JU-CLEANH2-2025-02-03

- HORIZON-JU-CLEANH2-2025-04-01

- HORIZON-JU-CLEANH2-2025-06-01

- HORIZON-JU-CLEANH2-2025-06-02



3. Subcontracting

For all topics: an additional obligation regarding subcontracting has been introduced, namely that subcontracted work may only be performed in target countries set out in the call conditions.

The beneficiaries must ensure that the subcontracted work is performed in the countries set out in the call conditions.

The target countries are all Member States of the European Union and all Associated Countries.



4. Intellectual Property Rights (IPR), background and results, access rights and rights of use (article 16 and Annex 5 of the Model Grant Agreement (MGA))

An additional information obligation has been introduced for topics including standardisation activities: ‘Beneficiaries must, up to 4 years after the end of the action, inform the granting authority if the results could reasonably be expected to contribute to European or international standards’. These concerns the topics below:

- HORIZON-JU-CLEANH2-2025-02-01

Specific conditions

described in the chapter 2.2.3.2 of the Clean Hydrogen JU 2025 Annual Work Programme

Support & Resources

Online Manual is your guide on the procedures from proposal submission to managing your grant.

Horizon Europe Programme Guide contains the detailed guidance to the structure, budget and political priorities of Horizon Europe.

Funding & Tenders Portal FAQ – find the answers to most frequently asked questions on submission of proposals, evaluation and grant management.

Research Enquiry Service – ask questions about any aspect of European research in general and the EU Research Framework Programmes in particular.

National Contact Points (NCPs) – get guidance, practical information and assistance on participation in Horizon Europe. There are also NCPs in many non-EU and non-associated countries (‘third-countries’).

Enterprise Europe Network – contact your EEN national contact for advice to businesses with special focus on SMEs. The support includes guidance on the EU research funding.

IT Helpdesk – contact the Funding & Tenders Portal IT helpdesk for questions such as forgotten passwords, access rights and roles, technical aspects of submission of proposals, etc.

European IPR Helpdesk assists you on intellectual property issues.

CEN-CENELEC Research Helpdesk and ETSI Research Helpdesk – the European Standards Organisations advise you how to tackle standardisation in your project proposal.

The European Charter for Researchers and the Code of Conduct for their recruitment – consult the general principles and requirements specifying the roles, responsibilities and entitlements of researchers, employers and funders of researchers.

Partner Search help you find a partner organisation for your proposal.

Latest Updates

Last Changed: August 8, 2025

CALL UPDATE:

An overview of the evaluation results for the call HORIZON-JU-CLEANH2-2025 is now available. More information can be found in this document: FLASH EVALUATION RESULTS

Last Changed: April 24, 2025

CALL UPDATE: PROPOSAL NUMBERS



Call HORIZON-JU-CLEANH2-2025 has closed on the 23/04/2025.

212 proposals have been submitted.



The breakdown per topic is:

RENEWABLE HYDROGEN PRODUCTION

-HORIZON-JU-CLEANH2-2025-01-01: 21 proposals

-HORIZON-JU-CLEANH2-2025-01-02: 10 proposals

-HORIZON-JU-CLEANH2-2025-01-03: 11 proposals

-HORIZON-JU-CLEANH2-2025-01-04: 9 proposals

-HORIZON-JU-CLEANH2-2025-01-05: 8 proposals

-HORIZON-JU-CLEANH2-2025-01-06: 14 proposals

-HORIZON-JU-CLEANH2-2025-01-07: 15 proposals



HYDROGEN STORAGE AND DISTRIBUTION

-HORIZON-JU-CLEANH2-2025-02-01: 9 proposals

-HORIZON-JU-CLEANH2-2025-02-02: 10 proposals

-HORIZON-JU-CLEANH2-2025-02-03: 7 proposals



HYDROGEN END USES: TRANSPORT APPLICATIONS

-HORIZON-JU-CLEANH2-2025-03-01: 9 proposals

-HORIZON-JU-CLEANH2-2025-03-02: 7 proposals

-HORIZON-JU-CLEANH2-2025-03-03: 7 proposals



HYDROGEN END USES: CLEAN HEAT AND POWER

-HORIZON-JU-CLEANH2-2025-04-01: 19 proposals



CROSS-CUTTING

-HORIZON-JU-CLEANH2-2025-05-01: 7 proposals

-HORIZON-JU-CLEANH2-2025-05-02: 8 proposals

-HORIZON-JU-CLEANH2-2025-05-03: 6 proposals



HYDROGEN VALLEYS

-HORIZON-JU-CLEANH2-2025-06-01: 16 proposals

-HORIZON-JU-CLEANH2-2025-06-02: 19 proposals



Evaluation results are expected to be communicated in August 2025.

Last Changed: April 15, 2025

Notice to Applicants (15/04/2025)

Please note that we will no longer be accepting questions regarding the current call for proposals HORIZON-JU-CLEANH2-2025. We appreciate your interest and encourage you to refer to the published documentation for any remaining clarifications.

Last Changed: April 15, 2025

Errata Notice - Topic HORIZON-JU-CLEANH2-2025-01-05

The correct text for topic HORIZON-JU-CLEANH2-2025-01-05 stipulates:

"Furthermore, project results are expected to contribute to the following KPIs, targeted at co-electrolyser scale, specific for three high temperature co-electrolysis technologies: Oxide and Proton conductive Solid Oxide electrolysers (SOEL, PCCEL) and Molten Carbonate Electrolyser (MCE):

Oxide conductive Solid Oxide electrolysers (SOEL)

  • Power to syngas efficiency: 0.9 kWLHV /kWe
  • Degradation in operating conditions: 0.8 %/1000h @1A/cm²
  • Unit cost: 500 €/kW

Proton Conductive Ceramic electrolysers (PCCEL)

  1. Power to syngas efficiency: 0.9 kWLHV/ kWe
  2. Degradation in operating conditions: 0.8 %/1000h @0.75A/cm²
  3. Unit cost: 500 €/kW

Molten Carbonate electrolysers (MCE)

  1. Power to syngas efficiency: 0.93 kWLHV/ kWe
  2. Degradation in operating conditions: 0.5 %/1000h @0.5A/cm²
  3. Unit cost: 500 €/kW

KPIs are defined for the main high temperature co-electrolysis techniques, derived from the SRIA and from results of previous EU funded projects."

Last Changed: April 3, 2025

Errata Notice – Topic Conditions



We appreciate your attention to this information. Please be advised that the Topic Conditions are provided below, as they were not displayed correctly under each topic. These conditions apply to all topics across the entire call.

We kindly ask you to refer to the information below and in the AWP2025 to ensure compliance with the applicable requirements.



General conditions



1. Admissibility Conditions: Proposal page limit and layout

described in Annex A and Annex E of the Horizon Europe Work Programme General Annexes.

Proposal page limits and layout: described in Part B of the Application Form available in the Submission System.

Page limit for Innovation Actions: For all Innovation Actions the page limit of the applications are 70 pages.

2. Eligible Countries 

described in Annex B of the Work Programme General Annexes.

A number of non-EU/non-Associated Countries that are not automatically eligible for funding have made specific provisions for making funding available for their participants in Horizon Europe projects. See the information in the Horizon Europe Programme Guide.

3. Other Eligibility Conditions 

described in Annex B of the Work Programme General Annexes.

Additional eligibility condition: Maximum contribution per topic

For some topics, in line with the Clean Hydrogen JU SRIA, an additional eligibility criterion has been introduced to limit the Clean Hydrogen JU requested contribution mostly for actions performed at high TRL level, including demonstration in real operational environment and with important involvement from industrial stakeholders and/or end users such as public authorities. Such actions are expected to leverage co-funding as commitment from stakeholders. It is of added value that such leverage is shown through the private investment in these specific topics. Therefore, proposals requesting contributions above the amounts specified per each topic below will not be evaluated:

- HORIZON-JU-CLEANH2-2025-01-04: The maximum Clean Hydrogen JU contribution that may be requested is EUR 6.00 million

- HORIZON-JU-CLEANH2-2025-01-06: The maximum Clean Hydrogen JU contribution that may be requested is EUR 8.00 million

- HORIZON-JU-CLEANH2-2025-02-03: The maximum Clean Hydrogen JU contribution that may be requested is EUR 6.00 million

- HORIZON-JU-CLEANH2-2025-04-01: The maximum Clean Hydrogen JU contribution that may be requested is EUR 5.00 million

- HORIZON-JU-CLEANH2-2025-06-01: The maximum Clean Hydrogen JU contribution that may be requested is EUR 20.00 million

- HORIZON-JU-CLEANH2-2025-06-02: The maximum Clean Hydrogen JU contribution that may be requested is EUR 9.00 million



Additional eligibility condition: Membership to Hydrogen Europe / Hydrogen Europe Research

For the topics listed below, in line with the Clean Hydrogen JU SRIA, an additional eligibility criterion has been introduced to ensure that one partner in the consortium is a member of either Hydrogen Europe or Hydrogen Europe Research. This concerns topics targeting actions for large-scale demonstrations, flagship projects and strategic research actions, where the industrial and research partners of the Clean Hydrogen JU are considered to play a key role in accelerating the commercialisation of hydrogen technologies by being closely linked to the Clean Hydrogen JU constituency, which could further ensure full alignment with the SRIA of the JU. This approach shall also ensure the continuity of the work performed within projects funded through the H2020 and FP7, by building up on their experience and consolidating the EU value-chain. In the Call 2025 this applies to: demonstration of efficient electrolysis coupling with variable renewable electricity and/or heat integration, demonstration of innovative hydrogen and solid carbon production from renewable gases/biogenic waste processes, demonstration of scalable ammonia cracking technology, and demonstration of stationary fuel cells in renewable energy communities. This will also apply to the Hydrogen Valley (flagship) topics as they are considered of strategic importance for the European Union ambitions to double the number of Hydrogen Valleys by 2025. For the Hydrogen Valleys topics a large amount of co-investment/cofunding of project participants/beneficiaries including national and regional programmes is expected.

- HORIZON-JU-CLEANH2-2025-01-04

- HORIZON-JU-CLEANH2-2025-01-06

- HORIZON-JU-CLEANH2-2025-02-03

- HORIZON-JU-CLEANH2-2025-04-01

- HORIZON-JU-CLEANH2-2025-06-01

- HORIZON-JU-CLEANH2-2025-06-02

4. Financial and operational capacity and exclusion 

described in Annex C of the Work Programme General Annexes.

5a. Evaluation and award: Award criteria, scoring and thresholds 

are described in Annex D of the Work Programme General Annexes.

5b. Evaluation and award: Submission and evaluation processes 

are described in Annex F of the Work Programme General Annexes and the Online Manual.



STEP (Sovereignty) Seal

For the topics below topics the STEP Seal (so called “Sovereignty Seal” under the STEP Regulation) will be awarded to proposals exceeding all of the evaluation thresholds set out in this Annual Work Programme. The STEP Seal is a label, which aims to increase the visibility of quality projects available for funding and help attract alternative and cumulative funding for quality projects, and simultaneously to provide a potential project pipeline for regional and national programmes

- HORIZON-JU-CLEANH2-2025-01-04

- HORIZON-JU-CLEANH2-2025-01-06

- HORIZON-JU-CLEANH2-2025-02-03

- HORIZON-JU-CLEANH2-2025-04-01

- HORIZON-JU-CLEANH2-2025-06-01

- HORIZON-JU-CLEANH2-2025-06-02

5c. Evaluation and award: Indicative timeline for evaluation and grant agreement 

described in Annex F of the Work Programme General Annexes.

6. Legal and financial set-up of the grants 

Eligible costs will take the form of a lump sum as defined in the Decision of 7 July 2021 authorising the use of lump sum contributions under the Horizon Europe Programme – the Framework Programme for Research and Innovation (2021-2027) – and in actions under the Research and Training Programme of the European Atomic Energy Community (2021-2025) [[This decision is available on the Funding and Tenders Portal, in the reference documents section for Horizon Europe, under ‘Simplified costs decisions’ or through this link: https://ec.europa.eu/info/funding-tenders/opportunities/docs/2021-2027/horizon/guidance/ls-decision_he_en.pdf]].

described in Annex G of the Work Programme General Annexes.



In addition to the standard provisions, the following specific provisions in the model grant agreement will apply:

1. Lump Sum

This year’s call for proposals will take the form of lump sums as defined in the Decision of 7 July 2021 authorising the use of lump sum contributions under the Horizon Europe Programme – the Framework Programme for Research and Innovation (2021- 2027) – and in actions under the Research and Training Programme of the European Atomic Energy Community (2021-2025).

Lump sums will be used across all topics in the Call 2025.



2. Full capitalised costs for purchases of equipment, infrastructure or other assets purchased specifically for the action

For some topics, in line with the Clean Hydrogen JU SRIA, mostly large-scale demonstrators or flagship projects specific equipment, infrastructure or other assets purchased specifically for the action (or developed as part of the action tasks) can exceptionally be declared as full capitalised costs. This concerns the topics below:

- HORIZON-JU-CLEANH2-2025-01-04

- HORIZON-JU-CLEANH2-2025-01-06

- HORIZON-JU-CLEANH2-2025-02-03

- HORIZON-JU-CLEANH2-2025-04-01

- HORIZON-JU-CLEANH2-2025-06-01

- HORIZON-JU-CLEANH2-2025-06-02



3. Subcontracting

For all topics: an additional obligation regarding subcontracting has been introduced, namely that subcontracted work may only be performed in target countries set out in the call conditions.

The beneficiaries must ensure that the subcontracted work is performed in the countries set out in the call conditions.

The target countries are all Member States of the European Union and all Associated Countries.



4. Intellectual Property Rights (IPR), background and results, access rights and rights of use (article 16 and Annex 5 of the Model Grant Agreement (MGA))

An additional information obligation has been introduced for topics including standardisation activities: ‘Beneficiaries must, up to 4 years after the end of the action, inform the granting authority if the results could reasonably be expected to contribute to European or international standards’. These concerns the topics below:

- HORIZON-JU-CLEANH2-2025-02-01

Specific conditions 

 

Documents



Application and evaluation forms and model grant agreement (MGA): 



Application form templates

Application form - Part B (HE CleanH2 RIA, IA)

Application form - Part B (HE CleanH2 CSA)

Evaluation form templates

Standard evaluation form (HE RIA, IA)

Standard evaluation form (HE CSA)

Guidance

HE Programme Guide 

Model Grant Agreements (MGA)

Lump Sum MGA 

Call-specific instructions 

Detailed budget table (HE LS) 

Clean Hydrogen JU - Annual Work Programme 2025 (AWP 2025)

 - AWP 2025

Clean Hydrogen JU - Strategic Research and Innovation Agenda (SRIA) 

- SRIA Clean Hydrogen JU

Lump Sums Guidance

Guidance: "Lump sums - what do I need to know?"

Comprehensive information on lump sum funding in Horizon Europe 

Additional documents: 



HE Main Work Programme 2023–2025 – 1. General Introduction

HE Main Work Programme 2023–2025 – 13. General Annexes

HE Programme Guide

HE Framework Programme 2021/695

HE Specific Programme Decision 2021/764 

EU Financial Regulation 2024/2509

Rules for Legal Entity Validation, LEAR Appointment and Financial Capacity Assessment 

EU Grants AGA — Annotated Model Grant Agreement 

Funding & Tenders Portal Online Manual 

Funding & Tenders Portal Terms and Conditions 

Funding & Tenders Portal Privacy Statement



Last Changed: March 31, 2025

The excel detailed budget table available in the submission system “Download Part B templates” section had outdated values for the SME owner unit cost category.

Today, the issue has been rectified and the template available is the correct version, containing up-to-date values for the SME owner unit cost category.

Please make sure you download and use the correct budget table in your submission.

For the applicants that have already submitted their proposals, please be aware that the system still allows you to edit and re-submit your proposal using the updated excel template.

Last Changed: March 14, 2025

In section "Get support" the Specific FAQ document from call HORIZON-JU-CLEANH2-2025 has been updated

Last Changed: February 20, 2025

In section "Get support" the Specific FAQ document from call HORIZON-JU-CLEANH2-2025 has been updated

Last Changed: January 30, 2025
The submission session is now available for: HORIZON-JU-CLEANH2-2025-05-03, HORIZON-JU-CLEANH2-2025-05-02, HORIZON-JU-CLEANH2-2025-02-01, HORIZON-JU-CLEANH2-2025-03-03, HORIZON-JU-CLEANH2-2025-01-05, HORIZON-JU-CLEANH2-2025-01-01, HORIZON-JU-CLEANH2-2025-02-03, HORIZON-JU-CLEANH2-2025-05-01, HORIZON-JU-CLEANH2-2025-02-02, HORIZON-JU-CLEANH2-2025-06-02, HORIZON-JU-CLEANH2-2025-01-07, HORIZON-JU-CLEANH2-2025-06-01, HORIZON-JU-CLEANH2-2025-03-02, HORIZON-JU-CLEANH2-2025-03-01, HORIZON-JU-CLEANH2-2025-01-02, HORIZON-JU-CLEANH2-2025-04-01, HORIZON-JU-CLEANH2-2025-01-06, HORIZON-JU-CLEANH2-2025-01-04, HORIZON-JU-CLEANH2-2025-01-03
Improved lifetime and cost of high-temperature electrolysers by introducing innovative materials and components in stacks and BoP | Grantalist