Novel large-scale aboveground storage solutions for demand-optimised supply of hydrogen
HORIZON JU Research and Innovation Actions
Basic Information
- Identifier
- HORIZON-JTI-CLEANH2-2024-02-02
- Programme
- HORIZON-JTI-CLEANH2-2024
- Programme Period
- 2021 - 2027
- Status
- Closed (31094503)
- Opening Date
- January 18, 2024
- Deadline
- April 17, 2024
- Deadline Model
- single-stage
- Budget
- €145,000,000
- Min Grant Amount
- €6,000,000
- Max Grant Amount
- €6,000,000
- Expected Number of Grants
- 1
- Keywords
- HORIZON-JTI-CLEANH2-2024-02-02HORIZON-JTI-CLEANH2-2024Hydrogen
Description
Future hydrogen related infrastructure components need to store significant amounts of hydrogen and deliver it according to the specific amounts, frequencies, and rates of hydrogen demand:
- Heavy-duty Refuelling stations:
- Trucks:
- Expected H2 turnover: 5-10 tons/day;
- Expected H2 capacity: 10-50 tons.
- Trains:
- Expected H2 turnover: 10-50 tons/day;
- Expected H2 capacity: 20-250 tons.
- Ships:
- Expected H2 turnover: 50-500 tons/day;
- Expected H2 capacity: 100-2500 tons.
- Temporary Refuelling Stations (e.g. in road construction or mining):
- Expected H2 turnover: 1-10 tons/day;
- Expected H2 capacity: 1-10 tons.
- Trucks:
- Residential quarters, off-grid communities, industrial processes (metals or glass processing), import terminals, on-shore buffer storages: large variations in daily, weekly or monthly hydrogen storage and delivery are to be expected.
Currently, mainly compressed and liquefied hydrogen storage are used as aboveground options. They have several shortcomings: operation conditions (pressure, temperature), volume and geometrical footprint, potential for sudden release of large amounts of hydrogen, limited perspectives for further lowering cost. Research on novel hydrogen storage solutions is expected to overcome these deficits.
Project results are expected to contribute to all following outcomes:
- Advancing the maturity of aboveground hydrogen storage solutions based on novel gaseous, on novel solid or liquid hydrogen carrier, or on novel hybrid storage solutions;
- Decrease cost and energy consumption for delivery of hydrogen and, thus, increase the competitiveness of hydrogen technologies;
- Minimising impacts on the environment and maximising the safety of large scale aboveground hydrogen storage to significantly strengthen the European value chain of hydrogen delivery;
- Foster the establishment of new business cases for manufacturers of hydrogen storage system solutions by contributing to the implementation of regulations, codes, and standards for large scale aboveground storage systems for the abovementioned applications;
- Promoting the role that hydrogen can play for reaching the climate goals by validating its safe and cost-effective large scale aboveground storage in an application relevant environment.
Project results are expected to contribute to the following objectives and KPIs of the Clean Hydrogen JU as reflected in the SRIA 2021-2027:
- Undertake research and develop novel solutions for lowering cost and improving efficiency of aboveground storage solutions in some or all of the applications mentioned above.
- Showcase in this RIA the potential to decrease the cost and energy demand of hydrogen delivery by validating installations of a novel storage technology at the hundred kg H2 module scale at TRL5 by 2027, allowing for implementation above the 20 ton H2 scale by 2030 (SRIA, KPI Table 11);
- Validate the requirements for distributed aboveground storage solutions at TRL5 with the target, to achieve by 2030 a CAPEX lower than 600 €/kg H2 on the 20 ton H2 scale (SRIA, KPI Table 11).
- Validate a density of at least 40 kg H2/m3 on storage container level
Further expected outcomes under this topic:
- Novel safety solutions and features of the proposed storage technology, in order to reduce safety distances or store hydrogen at locations not being allowed at present for state-of-the-art compressed or liquid hydrogen storage, e.g. in buildings or shallow below surface;
- Reduction of the geometrical footprint and volume for relevant applications (e.g., hydrogen storage in HRS in inner urban areas or inside of buildings) and, thus, decrease the cost of ground in comparison to state-of-the-art compressed or liquid hydrogen storage;
- Progress in lowering the environmental impact and global warming potential of hydrogen storage, shown by a comprehensive Life Cycle Analysis (LCA). Potentials for recycling of materials used for building and operation of the storage system should be included.
Research activities under this topic should focus on novel safe, low-cost bulk storage solutions with the potential to enable demand- and application-optimised supply of H2 on the (multi-) tons range for the various applications mentioned above.
Additionally, bulk hydrogen storage in urban industrial or residential environments faces special challenges: high cost for ground calls for an as low as possible geometrical footprint, and installation in the public domain should fulfil highest safety requirements. In contrast to mobile storage systems, requirements on weight and rate of H2 loading are however more relaxed. Some applications would benefit from placing the storage system even inside of buildings or up to 10 metres underground (which is considered in this topic still as “aboveground” storage in contrast to storage in underground caverns or porous rock formations), which is currently not feasible due to safety regulations. Therefore, research activities should have a focus on minimising the geometrical footprint and volume of the storage system, as well as on safely preventing the accidental release of large amounts of H2 by developing inherently safe storage solutions.
Furthermore, to reduce OPEX and contribute to Europe’s target on reducing total energy demand, the energy efficiency of the whole conversion chain from H2 production, transport and storage up to its final use, has to be maximised while minimising the scope and frequency of maintenance activities. Consequently, research activities under this topic should also develop high efficiency storage systems, optimally integrated into the respective application with minimal energy requirements, e.g., profiting from waste energy (heat), and with minimised requirements for operational maintenance.
The proposed novel storage solution should be validated in line with the following requirements:
- Proposed storage technologies should internally operate in the temperature range between -40°C and +120°C. This requirement does not apply to any reactors for hydrogen loading or release that may be necessary, but only to the storage containers themselves. But ambient temperature solutions are preferred also for these reactors.
- Release of only hydrogen from the storage system. The physical state and degree of purity of the released hydrogen should fit to potential applications of the proposed novel storage technology and should be listed together with those applications.
- Proposed storage system may be single or modular. The validation system should have a capacity of at least 100 kg H2 in total. It may consist of storage modules loaded off-site with hydrogen or a hydrogen carrier and transported to the validation site or modules loaded on-site. Proposals should elaborate on the option used to supply hydrogen to the storage system.
- Proposals should describe a roadmap for scale-up of the proposed technology for storage of 20 tons of H2 or more for the applications envisaged by the proposed technology, by 2030
- Projects should validate the potential to reduce OPEX (energy, water, heating/cooling, maintenance, replacement of parts, recertification, …) to a level of < 1 €/delivered kg of H2 in 2030 on the ton to 20 ton/day delivery scale;
- The safety of the storage system and boundary conditions for its implementation should be defined, since further development of already existing or the establishment of new technical rules, codes and standards for novel storage solutions is a prerequisite for the establishment of future market opportunities and business cases. The safety analysis should deliver required conditions of operation of the storage system with respect to amounts and rates of unintended possible release of hydrogen, necessary ventilation, and safety distances to neighbouring installations.
- Projects may include a work package on simulation of effects of failure and unintended hydrogen release of the proposed storage technology, validating the progress beyond the state of the art.
- Projects may implement in-situ techniques for H2 filling level and state of health monitoring to extrapolate lifetime of the storage system.
- As far as possible, critical raw materials as well as “forever chemicals” in the production chain should be avoided, favouring circular economy approaches and use of chemicals and materials with minimum environmental impact. Use of recycled raw materials for construction and operation is preferred. The necessary consumption of raw materials and their resources for building and operation of the proposed storage technology should be described in the proposal.
- A broader range of applicability of the proposed technology would be a plus. Proposals may identify and provide numbers on specific business cases.
- If one, some or all of the following are necessary for envisaged applications - a hydrogenation unit, a dehydrogenation unit, a cracker, a purification, a compression device – these, as well as all necessary auxiliaries (e.g., internal and external heat management) should be included for calculation of total system storage density, footprint, CAPEX, OPEX, etc. Hydrogenation or hydrogen processing units for loading have to be included in the system envelope only if they are necessary on-site for the storage process. E.g., a hydrogenation unit for a novel type of hydrogen carrier, operated at a different site than that of the novel storage system, does not have to be included, but may be described for clarification of advantages of the proposed storage technology.
- Progress with respect to state-of-the-art in CAPEX and OPEX, considering additional cost advantages like low footprint / cost of ground or use of industrial waste heat lowering energy cost, should be assessed in a Life Cycle Cost assessment (LCCA) of potential use cases.
Liquid hydrogen storage technologies are out scope of this topic.
Proposals are encouraged to explore synergies with the Zero Emission Waterborne Transport (ZEWT) partnership and Clean Aviation Joint Undertaking (CA-JU) as this topic has the potential for providing the large scale hydrogen storage facilities that ports and airports will require.
For additional elements applicable to all topics please refer to section 2.2.3.2.
Activities are expected to start at TRL 3 and achieve TRL 5 by the end of the project - see General Annex B.
The JU estimates that an EU contribution of maximum EUR 4.00 million would allow these outcomes to be addressed appropriately.
The conditions related to this topic are provided in the chapter 2.2.3.2 of the Clean Hydrogen JU 2024 Annual Work Plan and in the General Annexes to the Horizon Europe Work Programme 2023–2024 which apply mutatis mutandis
Eligibility & Conditions
General conditions
General conditions
1. Admissibility conditions: described in Annex A and Annex E of the Horizon Europe Work Programme General Annexes
Proposal page limits and layout: described in Part B of the Application Form available in the Submission System.
Page limit for Innovation Actions
For all Innovation Actions the page limit of the applications are 70 pages.
2. Eligible countries: described in Annex B of the Work Programme General Annexes
A number of non-EU/non-Associated Countries that are not automatically eligible for funding have made specific provisions for making funding available for their participants in Horizon Europe projects. See the information in the Horizon Europe Programme Guide.
3. Other eligibility conditions: described in Annex B of the Work Programme General Annexes
Additional eligibility condition: Maximum contribution per topic
For some topics, in line with the Clean Hydrogen JU SRIA, an additional eligibility criterion has been introduced to limit the Clean Hydrogen JU requested contribution mostly for actions performed at high TRL level, including demonstration in real operational environment and with important involvement from industrial stakeholders and/or end users such as public authorities. Such actions are expected to leverage co-funding as commitment from stakeholders. It is of added value that such leverage is shown through the private investment in these specific topics. Therefore, proposals requesting contributions above the amounts specified per each topic below will not be evaluated:
- HORIZON-JTI-CLEANH2-2024-01-05: The maximum Clean Hydrogen JU contribution that may be requested is EUR 10.00 million
- HORIZON-JTI-CLEANH2-2024-02-03: The maximum Clean Hydrogen JU contribution that may be requested is EUR 6.00 million
- HORIZON-JTI-CLEANH2-2024-02-04: The maximum Clean Hydrogen JU contribution that may be requested is EUR 6.00 million
- HORIZON-JTI-CLEANH2-2024-02-05: The maximum Clean Hydrogen JU contribution that may be requested is EUR 8.00 million
- HORIZON-JTI-CLEANH2-2024-03-04: The maximum Clean Hydrogen JU contribution that may be requested is EUR 6.00 million
- HORIZON-JTI-CLEANH2-2024-04-01: The maximum Clean Hydrogen JU contribution that may be requested is EUR 5.00 million
- HORIZON-JTI-CLEANH2-2024-06-01: The maximum Clean Hydrogen JU contribution that may be requested is EUR 20.00 million
- HORIZON-JTI-CLEANH2-2024-06-02: The maximum Clean Hydrogen JU contribution that may be requested is EUR 9.00 million
Additional eligibility condition: Membership to Hydrogen Europe / Hydrogen Europe Research
For some topics, in line with the Clean Hydrogen JU SRIA, an additional eligibility criterion has been introduced to ensure that one partner in the consortium is a member of either Hydrogen Europe or Hydrogen Europe Research. This concerns topics targeting actions for large-scale demonstrations, flagship projects and strategic research actions, where the industrial and research partners of the Clean Hydrogen JU are considered to play a key role in accelerating the commercialisation of hydrogen technologies by being closely linked to the Clean Hydrogen JU constituency, which could further ensure full alignment with the SRIA of the JU. This approach shall also ensure the continuity of the work performed within projects funded through the H2020 and FP7, by building up on their experience and consolidating the EU value-chain. In the Call 2024 this applies to the demonstration of innovative hydrogen production for energy intensive industries and the chemical sectors, demonstration of innovative technologies for the distribution of hydrogen including multi-purpose hydrogen refueling infrastructure, demonstration of hydrogen-powered inland shipping or short sea shipping solutions. This will also apply to the two Hydrogen Valley topics as they are considered of strategic importance for the European Union ambitions to double the number of Hydrogen Valleys by 2025. For these flagship topics large amount of co-investment/co-funding of project participants/beneficiaries including national and regional programmes is expected. This applies to the following topics:
- HORIZON-JTI-CLEANH2-2024-01-05
- HORIZON-JTI-CLEANH2-2024-02-03
- HORIZON-JTI-CLEANH2-2024-02-04
- HORIZON-JTI-CLEANH2-2024-02-05
- HORIZON-JTI-CLEANH2-2024-03-04
- HORIZON-JTI-CLEANH2-2024-04-01
- HORIZON-JTI-CLEANH2-2024-06-01
- HORIZON-JTI-CLEANH2-2024-06-02
4. Financial and operational capacity and exclusion: described in Annex C of the Work Programme General Annexes
-
Award criteria, scoring and thresholds are described in Annex D of the Work Programme General Annexes
-
Submission and evaluation processes are described in Annex F of the Work Programme General Annexes and the Online Manual
Seal of Excellence:
For the two topics in the Call 2024 addressing Hydrogen Valleys, the ‘Seal of Excellence’ will be awarded to applications exceeding all of the evaluation thresholds set out in this Annual Work Programme but cannot be funded due to lack of budget available to the call. This will further improve the chances of good proposals, otherwise not selected, to find alternative funding in other Union programmes, including those managed by national or regional Managing Authorities. With prior authorisation from the applicants, the Clean Hydrogen JU may share information concerning the proposal and the evaluation with interested financing authorities. In this Annual Work Programme ‘Seal of Excellence’ will be awarded for the following topic(s):
- HORIZON-JTI-CLEANH2-2024-06-01
- HORIZON-JTI-CLEANH2-2024-06-02
-
Indicative timeline for evaluation and grant agreement: described in Annex F of the Work Programme General Annexes
Eligible costs will take the form of a lump sum as defined in the Decision of 7 July 2021 authorising the use of lump sum contributions under the Horizon Europe Programme – the Framework Programme for Research and Innovation (2021-2027) – and in actions under the Research and Training Programme of the European Atomic Energy Community (2021-2025). [[This decision is available on the Funding and Tenders Portal, in the reference documents section for Horizon Europe, under ‘Simplified costs decisions’ or through this link: https://ec.europa.eu/info/funding-tenders/opportunities/docs/2021-2027/horizon/guidance/ls-decision_he_en.pdf]].
6. Legal and financial set-up of the grants: described in Annex G of the Work Programme General Annexes
In addition to the standard provisions, the following specific provisions in the model grant agreement will apply:
1. Lump Sum
This year’s call for proposals will take the form of lump sums as defined in the Decision of 7 July 2021 authorising the use of lump sum contributions under the Horizon Europe Programme – the Framework Programme for Research and Innovation (2021- 2027) – and in actions under the Research and Training Programme of the European Atomic Energy Community (2021-2025). Lump sums will be used across all topics in the Call 2024.
2. Full capitalised costs for purchases of equipment, infrastructure or other assets purchased specifically for the action
For some topics, in line with the Clean Hydrogen JU SRIA, mostly large-scale demonstrators or flagship projects specific equipment, infrastructure or other assets purchased specifically for the action (or developed as part of the action tasks) can exceptionally be declared as full capitalised costs. This concerns the topics below:
- HORIZON-JTI-CLEANH2-2024-01-05
- HORIZON-JTI-CLEANH2-2024-02-03
- HORIZON-JTI-CLEANH2-2024-02-04
- HORIZON-JTI-CLEANH2-2024-02-05
- HORIZON-JTI-CLEANH2-2024-03-04
- HORIZON-JTI-CLEANH2-2024-04-01
- HORIZON-JTI-CLEANH2-2024-06-01
- HORIZON-JTI-CLEANH2-2024-06-02
3. Subcontracting
For all topics: an additional obligation regarding subcontracting has been introduced, namely that subcontracted work may only be performed in target countries set out in the call conditions.
The beneficiaries must ensure that the subcontracted work is performed in the countries set out in the call conditions.
The target countries are all Member States of the European Union and all Associated Countries.
Specific conditions
7. Specific conditions: described in the chapter 2.2.3.2 of the Clean Hydrogen JU 2024 Annual Work Programme
Documents
Call documents:
Application form
- Application form - Part B (HE CleanH2 JU RIA, IA)
- Application form - Part B (HE CleanH2 JU CSA)
Evaluation form
- Evaluation form (HE RIA, IA)
Model Grant Agreement (MGA)
Call-specific instructions
- Detailed budget table (HE LS)
Clean Hydrogen JU - Annual Work Programme 2024 (AWP 2024)
- AWP 2024
Clean Hydrogen JU - Strategic Research and Innovation Agenda (SRIA)
Lump Sums Guidance
- Guidance: "Lump sums - what do I need to know?"
- Comprehensive information on lump sum funding in Horizon Europe
Additional documents:
HE Main Work Programme 2023–2024 – 1. General Introduction
HE Main Work Programme 2023–2024 – 13. General Annexes
HE Framework Programme and Rules for Participation Regulation 2021/695
HE Specific Programme Decision 2021/764
Rules for Legal Entity Validation, LEAR Appointment and Financial Capacity Assessment
EU Grants AGA — Annotated Model Grant Agreement
Funding & Tenders Portal Online Manual
Support & Resources
Online Manual is your guide on the procedures from proposal submission to managing your grant.
Horizon Europe Programme Guide contains the detailed guidance to the structure, budget and political priorities of Horizon Europe.
Funding & Tenders Portal FAQ – find the answers to most frequently asked questions on submission of proposals, evaluation and grant management.
Research Enquiry Service – ask questions about any aspect of European research in general and the EU Research Framework Programmes in particular.
National Contact Points (NCPs) – get guidance, practical information and assistance on participation in Horizon Europe. There are also NCPs in many non-EU and non-associated countries (‘third-countries’).
Enterprise Europe Network – contact your EEN national contact for advice to businesses with special focus on SMEs. The support includes guidance on the EU research funding.
IT Helpdesk – contact the Funding & Tenders Portal IT helpdesk for questions such as forgotten passwords, access rights and roles, technical aspects of submission of proposals, etc.
European IPR Helpdesk assists you on intellectual property issues.
CEN-CENELEC Research Helpdesk and ETSI Research Helpdesk – the European Standards Organisations advise you how to tackle standardisation in your project proposal.
The European Charter for Researchers and the Code of Conduct for their recruitment – consult the general principles and requirements specifying the roles, responsibilities and entitlements of researchers, employers and funders of researchers.
Partner Search Services help you find a partner organisation for your proposal.
Specific FAQ document from call HORIZON-JTI-CLEANH2-2024
Latest Updates
CALL UPDATE:
An overview of the evaluation results for the call HORIZON-JTI-CLEANH2-2024 is now available. More information can be found in this document: FLASH EVALUATION RESULTS
CALL UPDATE: PROPOSAL NUMBERS
Call HORIZON-JTI-CLEANH2-2024 has closed on the 17/04/2024.
151 proposals have been submitted.
The breakdown per topic is:
RENEWABLE HYDROGEN PRODUCTION
- HORIZON-JTI-CLEANH2-2024-01-01: 9 proposals
- HORIZON-JTI-CLEANH2-2024-01-02: 12 proposals
- HORIZON-JTI-CLEANH2-2024-01-03: 23 proposals
- HORIZON-JTI-CLEANH2-2024-01-04: 10 proposals
- HORIZON-JTI-CLEANH2-2024-01-05: 3 proposals
HYDROGEN STORAGE AND DISTRIBUTION
- HORIZON-JTI-CLEANH2-2024-02-01: 2 proposals
- HORIZON-JTI-CLEANH2-2024-02-02: 6 proposals
- HORIZON-JTI-CLEANH2-2024-02-03: 2 proposals
- HORIZON-JTI-CLEANH2-2024-02-04: 1 proposal
- HORIZON-JTI-CLEANH2-2024-02-05: 2 proposals
HYDROGEN END USES: TRANSPORT APPLICATIONS
- HORIZON-JTI-CLEANH2-2024-03-01: 3 proposals
- HORIZON-JTI-CLEANH2-2024-03-02: 3 proposals
- HORIZON-JTI-CLEANH2-2024-03-03: 10 proposals
- HORIZON-JTI-CLEANH2-2024-03-04: 2 proposals
HYDROGEN END USES: CLEAN HEAT AND POWER
- HORIZON-JTI-CLEANH2-2024-04-01: 10 proposals
- HORIZON-JTI-CLEANH2-2024-04-02: 8 proposals
CROSS-CUTTING
- HORIZON-JTI-CLEANH2-2024-05-01: 6 proposals
- HORIZON-JTI-CLEANH2-2024-05-02: 10 proposals
HYDROGEN VALLEYS
- HORIZON-JTI-CLEANH2-2024-06-01: 12 proposals
- HORIZON-JTI-CLEANH2-2024-06-02: 17 proposals
Evaluation results are expected to be communicated in end of July – beginning August 2024
The correct text for topic HORIZON-JTI-CLEANH2-2024-03-04 is available in the Work Programme 2024 and stipulates:
- Topic description: “Activities are expected to start at TRL 5 and achieve TRL 7 by the end of the project - see General Annex B”
- Topic conditions “HORIZON-JTI-CLEANH2-2024-03-04: The maximum Clean Hydrogen JU contribution that may be requested is EUR 6.00 million”
In section "Get support" the Specific FAQ document from call HORIZON-JTI-CLEANH2-2024 has been updated
In section "Get support" the Specific FAQ document from call HORIZON-JTI-CLEANH2-2024 has been updated
The excel detailed budget table available in the submission system “Download Part B templates” section had incorrect funding rate options of 60% and 100%.
Today, the issue has been rectified and the excel detailed budget table is now displaying the correct funding rate options of 70% and 100%.
Please make sure you download and use the correct budget table in your submission.
In section "Get support" the Specific FAQ document from call HORIZON-JTI-CLEANH2-2024 has been updated