Pre-Normative Research about the compatibility of transmission gas grid steels with hydrogen and development of mitigation techniques
HORIZON JU Research and Innovation Actions
Basic Information
- Identifier
- HORIZON-JTI-CLEANH2-2023-02-02
- Programme
- HORIZON-JTI-CLEANH2-2023-1
- Programme Period
- 2021 - 2027
- Status
- Closed (31094503)
- Opening Date
- January 31, 2023
- Deadline
- April 18, 2023
- Deadline Model
- single-stage
- Budget
- €195,000,000
- Min Grant Amount
- €4,000,000
- Max Grant Amount
- €4,000,000
- Expected Number of Grants
- 1
- Keywords
- HORIZON-JTI-CLEANH2-2023-02-02HORIZON-JTI-CLEANH2-2023-1Gas transmission pipelines
Description
This topic is aimed at accelerating the deployment of a safe, flexible, and efficient hydrogen grid by repurposing part of the gas networks, as this solution is expected to be particularly cost-effective compared to the development of new pipes. However, steel embrittlement by hydrogen may limit this possibility. To assess precisely which pipes might be repurposed on a shared basis between EU Member States’ authorities and gas transmission operators, Pre-Normative Research on pipe integrity is required to develop a European standard, as current US codes are not adapted to the projected use-cases in EU.
In its strategic vision for a climate-neutral EU in 2050, the European Commission forecasts the share of hydrogen in Europe’s energy mix to grow from the current less than 2% to 13-14% by 2050. According to the REPowerEU ambitions published in May 2022, about 20 million tonnes of renewable hydrogen should already be distributed throughout Europe in 2030. For hydrogen to claim such position in the energy mix and as explicitly mentioned in the EU Hydrogen Strategy, it is essential that it becomes an intrinsic part of an integrated energy system, being used for daily or seasonal storage providing buffering functions thereby enhancing security of supply in the medium term. The REPowerEU strategy also calls for an acceleration of the deployment of an EU-wide pipeline infrastructure to transport hydrogen from areas with large renewable potential to demand centres across EU. Consequently, a pan-European grid will have to be established. To do so, there is significant energy system benefit in using existing natural gas assets across Europe, as they have large seasonal storage potential and can also readily manage large swings in daily demand. Total investment needs for key hydrogen infrastructure categories are estimated by the European Commission to be in the range of EUR 28 – 38 billion for EU-internal pipelines by 2030. In light of the EC’s REPowerEU proposal and in response to accelerated hydrogen market developments, members of the European Hydrogen Backbone Initiative[1] (gathering 31 European energy infrastructure operators from 28 countries) have shared an updated vision of the hydrogen grid, with a total length of 53,000 km in 2040 consisting of approximately 60% repurposed existing gas pipelines.
In a nearer term, to distribute hydrogen, EU gas grid operators are investigating the possibility to increase the content of hydrogen blends into natural gas from 2% in volume to 20% in existing Transmission gas grids. In its “Hydrogen and decarbonised Gas Package” revision proposal released in December 2021, the European Commission emphasises the need for a harmonised EU approach for cross-border interconnection points while leaving flexibility to the Member States, with a floor rate for hydrogen blends that could be set at 5% for all cross-border points as of October 2025.
However, first public bibliographic results of R&D supported projects (e.g.: NaturalHY[2], HYready[3], MultiHy[4] or HIGGS[5] ) have identified a potential embrittlement effect on some steels used for pipes or network equipment. EU gas Transmission System Operators (TSOs) are currently compelled to refer to US standards (mainly ASME B31.12) that seem to be strongly over-conservative for EU hydrogen transmission use-cases, leading to ineffective investments and slowing down the administrative authorisation processes.
As stated by the European Committee for Standardisation CEN [CEN/TR 17797, March 2022], the State of the Art on gas grid steel integrity show limited available knowledge and a need for additional Pre-Normative Research. Also, there is a strong need to investigate further on specific and critical topics that are insufficiently covered by existing programs, like weld embrittlement or fatigue crack growth (FCG) mechanisms due to atomic hydrogen ingress into the steel. Even if some private or public projects are currently ongoing in some Member States, very limited shared results don’t allow other gas TSOs to benefit from such results. Moreover, since their testing protocols and environment are not yet aligned, it would prove anyway very difficult to compare projects’ results, with a risk for national TSOs and Authorities to draw misaligned conclusions on each side of the same interconnection. Therefore, it is critical to launch a comprehensive and overarching project at EU level to overcome these hurdles.
Project results are expected to contribute to all of the following expected outcomes:
- De-risking of business cases for an accelerated H2-readiness assessment of existing EU Transmission gas grids for hydrogen and enabling expansion of new dedicated infrastructures.
- Increasing operator, regulator, authorities, and end user confidence in safety of repurposed gas grids by consolidated and exhaustive scientific data.
- Delivering harmonised matrix to assess the hydrogen effect on steels present in the gas grids to get a comprehensive view of the networks’ degree of compatibility across EU and reduce the current over-conservative and inefficient approach. These guidelines are aimed at providing impactful Pre-Normative Research key inputs to contribute to the development of Regulation, Codes and Standards and thus enabling a seamless interconnection between hydrogen gas grids.
Project results are expected to contribute to the following objectives and KPIs of the Clean Hydrogen JU SRIA:
- Development of technologies and materials to facilitate the transportation of H2 via the natural gas Transmission grid.
- Enable through research and demonstration activities the safe and affordable transportation of hydrogen through the repurposed natural gas grid.
The following KPIs should be therefore achieved by the end of the project:
- Gas TSOs from the EU reviewed: 70% of EU Member States should be covered;
- Representative EU steels assessed by testing vs operational parameters (steel grade, pressure of H2, pressure cycling, etc.): 8 to 10 steel grades assessed;
- Design codes & standards optimisation with reduced conservatism vs ASME B31.12: 60% constraint reduction (in terms of Capacity and/or manageable linepack);
- PNR reports delivered to relevant standardisation bodies: Inputs on matrix H2-readiness assessment with proposed optimised mastercurves (toughness reduction and Fatigue Crack Growth;
- Guidelines for mitigation techniques:
- Operational parameters guidelines (pressure, cycling…);.
- Preliminary reports on Innovative technology
Embrittlement effect on metallic grid materials used for pipes or network equipment is directly linked to the pressure of hydrogen. The project should focus on specific critical issues that are insufficiently covered by existing publicly available knowledge, like hydrogen embrittlement in pipe and girth welds and heat affected zones (HAZ), Fatigue Crack Growth mechanisms and update of criteria for assessment of flaws. To date, no exhaustive characterisation of these effects on transmission grids is available, due to costly and time-consuming test methods and to the diversity of existing networks across the EU, in terms of material grades used, building protocols (e.g. welds) or day-to-day current and future operational parameters (e.g. pressure level and cycling). A particular effort is expected on quantifying these effects versus the main parameters (H2 pressure, mechanical loading, steel microstructures…).
Modern new steel grades likely to meet the deployment needs of H2 networks should also be investigated (allowing connections of hydrogen producers and consumers to repurposed grids). It is expected that these results will have a strong impact on the development of competitive products by EU pipe manufacturers.
Currently different US standards are used for the design of steel components (e.g. ASME B31.12) or to assess their mechanical properties in the presence of hydrogen (ANSI/CSA CHMC 1, ASTM G142). This wide range of standards and the lack of commonly agreed mechanical guidelines are slowing down the definition of harmonised criteria to assess hydrogen-readiness of EU gas networks. Moreover, due to the lack of data, these standards propose very conservative design. A preliminary ASME B31.12 sensitivity analysis about the ascending influence of different parameters on the lifetime prediction of pipelines revealed for instance that the conservatism in ASME B31.12 could be potentially optimised in the range between a factor of 2-4. A pronounced optimisation potential is expected by a more precise knowledge of the fatigue crack growth behaviour and well-founded initial defect sizes determined by optimised non-destructive testing methods.
Finally, the gas industry has identified that solutions to mitigate the impact of hydrogen could enable a higher conversion rate for natural gas pipelines to hydrogen operation. Early-stage developments of internal coatings, inhibitors, and preparation of guidelines to adapt network operating conditions are ongoing and need to be accelerated.
This project should cover steel grades constitutive of the gas Transmission networks, that are particularly sensitive to hydrogen embrittlement due to some high strength grades, high service pressure and potentially impacting pressure cycling.
Proposals should:
- First conduct a preliminary bibliographic review to identify the gap analysis, taking into account existing results from former and ongoing projects (e.g. NaturalHY[2], HYready[3], HIGGS[8], project supported under the topic HORIZON-JTI-CLEANH2-2022-05-03 ‘Safe hydrogen injection management at network-wide level: towards European gas sector transition’ and the German TransHyDE[9] flagship project).
- Propose a testing approach covering the most relevant steel grades constitutive of EU transmission gas grids (with a particular attention to ensuring a good geographical coverage) and their different (current and envisioned future) operating conditions (maximum pressure, pressure cycling, etc.) for a 100% hydrogen service (natural gas/hydrogen mixtures are not in the scope of this topic; however, due to the partial pressure of hydrogen being the driving parameter, it is expected that studying various pressure conditions will contribute indirectly to qualifying grid for mixtures as well). This approach should combine mechanical tests and innovative modelling approaches.
- Deliver harmonised protocols and run material tests to measure the mechanical properties affected by the presence of hydrogen which are critical for its integration into networks, based upon the gap analysis performed, and focusing on critical effects (should include fatigue crack growth rate, fracture toughness, and impacts on welds and HAZ) and impact of chemical composition for grid components and future pipes. The shared protocols should ensure all results will be comparable between the different testing laboratories involved and should serve as a standardised reference guideline for future investigations.
- After the testing work-packages, deliver to relevant standardisation bodies a matrix of gas grid steel grades’ behaviour in the presence of hydrogen as a function of network operating conditions, assessing the compatibility of vintage and new components. Projects should also define design criteria including the allowed size of defects, depending on the hydrogen gas pressure. It is expected that the projects should propose new Pre-Normative assessment master-curves to reduce current over-conservatism of existing norms that is ineffectively slowing down H2-readiness assessments. It is also expected that these Pre-Normative results will strongly limit the current redundancy of costly R&D actions conducted in the different EU Member States, and deliver common approval guidelines to national authorities. Therefore, it is expected that all the data and results from the projects will be made entirely public.
- Investigate and propose initial guidelines for mitigation techniques limiting hydrogen uptake and thus embrittlement (such as adapted network operating conditions, inhibitors, or coating) for repurposed or new hydrogen grids and document their impact.
In order to ensure an exhaustive geographical coverage, the consortium should include a large panel of TSOs from different EU Member States, whose operated networks represent the variety of EU gas transmission infrastructure. The knowledge and differences in the national networks can be very significant, therefore the EU wide coverage should guarantee full usability of results for EU companies.
Proposals are expected to collaborate and explore synergies with the activities of ENTSOG[10] and those of the European Metrology Programme for Innovation (EMPIR161) and European Partnership on Metrology of EURAME (e.g Decarb[11], MefhySto[12] and Met4H2[13] projects).
Given the scope of this topic), the involvement of formal standardisation bodies as part of the consortia is encouraged, with the aim of facilitating the uptake of the project results.
Applicants are encouraged to address sustainability and circularity aspects in the activities proposed.
Proposals are expected to contribute towards the activities of Mission Innovation 2.0 - Clean Hydrogen Mission. Cooperation with entities from Clean Hydrogen Mission member countries, which are neither EU Member States nor Horizon Europe Associated countries, is encouraged (see section 2.2.6.7 International Cooperation).
Activities are expected to start at TRL 3 and achieve TRL 5 by the end of the project - see General Annex B.
The JU estimates that an EU contribution of maximum EUR 4.00 million would allow these outcomes to be addressed appropriately.
Beneficiaries must, up to 4 years after the end of the action, inform the granting authority if the results could reasonably be expected to contribute to European or international standards.
The conditions related to this topic are provided in the chapter 2.2.3.2 of the Clean Hydrogen JU 2023 Annual Work Plan and in the General Annexes to the Horizon Europe Work Programme 2023–2024 which apply mutatis mutandis.
[2] https://www.gerg.eu/projects/hydrogen/naturalhy
[3] https://www.dnv.com/article/hyready-219355
[4] https://cordis.europa.eu/project/id/263335
[5] https://higgsproject.eu/
[6] https://www.gerg.eu/projects/hydrogen/naturalhy
[7] https://www.dnv.com/article/hyready-219355
[9] https://www.wasserstoff-leitprojekte.de/leitprojekte/transhyde
[10] https://entsog.eu/
[12] https://mefhysto.eu/
Eligibility & Conditions
General conditions
2. Eligible countries: described in Annex B of the Work Programme General Annexes
A number of non-EU/non-Associated Countries that are not automatically eligible for funding have made specific provisions for making funding available for their participants in Horizon Europe projects. See the information in the Horizon Europe Programme Guide.
3. Other eligibility conditions: described in Annex B of the Work Programme General Annexes
Additional eligibility condition: Maximum contribution per topic
For some topics, in line with the Clean Hydrogen JU SRIA, an additional eligibility criterion has been introduced to limit the Clean Hydrogen JU requested contribution mostly for actions performed at high TRL level, including demonstration in real operational environment and with important involvement from industrial stakeholders and/or end users such as public authorities. Such actions are expected to leverage co-funding as commitment from stakeholders. It is of added value that such leverage is shown through the private investment in these specific topics. Therefore, proposals requesting contributions above the amounts specified per each topic below will not be evaluated:
- HORIZON-JTI-CLEANH2-2023 -01-05: The maximum Clean Hydrogen JU contribution that may be requested is EUR 10.00 million
- HORIZON-JTI-CLEANH2-2023 -01-06: The maximum Clean Hydrogen JU contribution that may be requested is EUR 10.00 million
- HORIZON-JTI-CLEANH2-2023 -01-07: The maximum Clean Hydrogen JU contribution that may be requested is EUR 15.00 million
- HORIZON-JTI-CLEANH2-2023 -02-01: The maximum Clean Hydrogen JU contribution that may be requested is EUR 20.00 million
- HORIZON-JTI-CLEANH2-2023 -02-04: The maximum Clean Hydrogen JU contribution that may be requested is EUR 5.00 million
- HORIZON-JTI-CLEANH2-2023 -02-05: The maximum Clean Hydrogen JU contribution that may be requested is EUR 5.00 million
- HORIZON-JTI-CLEANH2-2023 -03-01: The maximum Clean Hydrogen JU contribution that may be requested is EUR 5.00 million
- HORIZON-JTI-CLEANH2-2023 -04-03: The maximum Clean Hydrogen JU contribution that may be requested is EUR 6.00 million
- HORIZON-JTI-CLEANH2-2023 -04-04: The maximum Clean Hydrogen JU contribution that may be requested is EUR 6.00 million
- HORIZON-JTI-CLEANH2-2023 -06-01: The maximum Clean Hydrogen JU contribution that may be requested is EUR 20.00 million
- HORIZON-JTI-CLEANH2-2023 -06-02: The maximum Clean Hydrogen JU contribution that may be requested is EUR 9.00 million
- HORIZON-JTI-CLEANH2-2023 -07-01: The maximum Clean Hydrogen JU contribution that may be requested is EUR 10.00 million
- HORIZON-JTI-CLEANH2-2023 -07-02: The maximum Clean Hydrogen JU contribution that may be requested is EUR 10.00 million
Additional eligibility condition: Membership to Hydrogen Europe / Hydrogen Europe Research
For some topics, in line with the Clean Hydrogen JU SRIA, an additional eligibility criterion has been introduced to ensure that one partner in the consortium is a member of either Hydrogen Europe or Hydrogen Europe Research. This concerns topics targeting actions for large-scale demonstrations, flagship projects and strategic research actions, where the industrial and research partners of the Clean Hydrogen JU are considered to play a key role in accelerating the commercialisation of hydrogen technologies by being closely linked to the Clean Hydrogen JU constituency, which could further ensure full alignment with the SRIA of the JU. This approach shall also ensure the continuity of the work performed within projects funded through the H2020 and FP7, by building up on their experience and consolidating the EU value-chain. This applies to the following topics:
- HORIZON-JTI-CLEANH2-2023 -01-05
- HORIZON-JTI-CLEANH2-2023 -01-06
- HORIZON-JTI-CLEANH2-2023 -01-07
- HORIZON-JTI-CLEANH2-2023 -02-01
- HORIZON-JTI-CLEANH2-2023 -02-04
- HORIZON-JTI-CLEANH2-2023 -02-05
- HORIZON-JTI-CLEANH2-2023 -03-01
- HORIZON-JTI-CLEANH2-2023 -04-03
- HORIZON-JTI-CLEANH2-2023 -04-04
- HORIZON-JTI-CLEANH2-2023 -06-01
- HORIZON-JTI-CLEANH2-2023 -06-02
- HORIZON-JTI-CLEANH2-2023 -07-01
- HORIZON-JTI-CLEANH2-2023 -07-02
4. Financial and operational capacity and exclusion: described in Annex C of the Work Programme General Annexes
-
Award criteria, scoring and thresholds are described in Annex D of the Work Programme General Annexes
-
Submission and evaluation processes are described in Annex F of the Work Programme General Annexes and the Online Manual
-
Indicative timeline for evaluation and grant agreement: described in Annex F of the Work Programme General Annexes
6. Legal and financial set-up of the grants: described in Annex G of the Work Programme General Annexes
In addition to the standard provisions, the following specific provisions in the model grant agreement will apply:
Intellectual Property Rights (IPR), background and results, access rights and rights of use (article 16 and Annex 5 of the Model Grant Agreement (MGA)).
An additional information obligation has been introduced for topics including standardisation activities: ‘Beneficiaries must, up to 4 years after the end of the action, inform the granting authority if the results could reasonably be expected to contribute to European or international standards’. These concerns the topics below:
For all topics in this Work Programme Clean Hydrogen JU shall have the right to object to transfers of ownership of results, or to grants of an exclusive licence regarding results, if: (a) the beneficiaries which generated the results have received Union funding; (b) the transfer or licensing is to a legal entity established in a non-associated third country; and (c) the transfer or licensing is not in line with Union interests. The grant agreement shall contain a provision in this respect.
Full capitalised costs for purchases of equipment, infrastructure or other assets purchased specifically for the action
For some topics, in line with the Clean Hydrogen JU SRIA, mostly large-scale demonstrators or flagship projects specific equipment, infrastructure or other assets purchased specifically for the action (or developed as part of the action tasks) can exceptionally be declared as full capitalised costs. This concerns the topics below:
Specific conditions
7. Specific conditions: described in the chapter 2.2.3.2 of the Clean Hydrogen JU 2023 Annual Work Programme
Documents
Call documents:
Application form — As well available in the Submission System from January 31st 2023
- Application form - Part B (HE CleanH2 RIA, IA)
- Application form - Part B (HE CleanH2 CSA)
Evaluation form
- Evaluation form (HE RIA, IA)
Model Grant Agreement (MGA)
Clean Hydrogen JU - Annual Work Programme 2023 (AWP 2023)
Additional documents:
HE Main Work Programme 2023–2024 – 1. General Introduction
HE Main Work Programme 2023–2024 – 13. General Annexes
HE Framework Programme and Rules for Participation Regulation 2021/695
HE Specific Programme Decision 2021/764
Rules for Legal Entity Validation, LEAR Appointment and Financial Capacity Assessment
EU Grants AGA — Annotated Model Grant Agreement
Funding & Tenders Portal Online Manual
Support & Resources
Online Manual is your guide on the procedures from proposal submission to managing your grant.
Horizon Europe Programme Guide contains the detailed guidance to the structure, budget and political priorities of Horizon Europe.
Funding & Tenders Portal FAQ – find the answers to most frequently asked questions on submission of proposals, evaluation and grant management.
Research Enquiry Service – ask questions about any aspect of European research in general and the EU Research Framework Programmes in particular.
National Contact Points (NCPs) – get guidance, practical information and assistance on participation in Horizon Europe. There are also NCPs in many non-EU and non-associated countries (‘third-countries’).
Enterprise Europe Network – contact your EEN national contact for advice to businesses with special focus on SMEs. The support includes guidance on the EU research funding.
IT Helpdesk – contact the Funding & Tenders Portal IT helpdesk for questions such as forgotten passwords, access rights and roles, technical aspects of submission of proposals, etc.
European IPR Helpdesk assists you on intellectual property issues.
CEN-CENELEC Research Helpdesk and ETSI Research Helpdesk – the European Standards Organisations advise you how to tackle standardisation in your project proposal.
The European Charter for Researchers and the Code of Conduct for their recruitment – consult the general principles and requirements specifying the roles, responsibilities and entitlements of researchers, employers and funders of researchers.
Partner Search Services help you find a partner organisation for your proposal.
Latest Updates
CALL UPDATE:
CALL UPDATE:
PROPOSAL NUMBERS
Call HORIZON-JTI-CLEANH2-2023-1 has closed on the 18/04/2023.
132 proposals have been submitted.
The breakdown per topic is:
RENEWABLE HYDROGEN PRODUCTION
· HORIZON-JTI-CLEANH2-2023-01-01: 24 proposals
· HORIZON-JTI-CLEANH2-2023-01-02: 3 proposals
· HORIZON-JTI-CLEANH2-2023-01-03: 7 proposals
· HORIZON-JTI-CLEANH2-2023-01-04: 11 proposals
· HORIZON-JTI-CLEANH2-2023-01-05: 8 proposals
· HORIZON-JTI-CLEANH2-2023-01-06: 0 proposal
· HORIZON-JTI-CLEANH2-2023-01-07: 1 proposal
HYDROGEN STORAGE AND DISTRIBUTION
· HORIZON-JTI-CLEANH2-2023-02-01: 4 proposals
· HORIZON-JTI-CLEANH2-2023-02-02: 2 proposals
· HORIZON-JTI-CLEANH2-2023-02-03: 2 proposals
· HORIZON-JTI-CLEANH2-2023-02-04: 3 proposals
· HORIZON-JTI-CLEANH2-2023-02-05: 1 proposal
HYDROGEN END USES: TRANSPORT APPLICATIONS
· HORIZON-JTI-CLEANH2-2023-03-01: 1 proposal
· HORIZON-JTI-CLEANH2-2023-03-02: 7 proposals
· HORIZON-JTI-CLEANH2-2023-03-03: 1 proposal
HYDROGEN END USES: CLEAN HEAT AND POWER
· HORIZON-JTI-CLEANH2-2023-04-01: 2 proposals
· HORIZON-JTI-CLEANH2-2023-04-02: 8 proposals
· HORIZON-JTI-CLEANH2-2023-04-03: 2 proposals
· HORIZON-JTI-CLEANH2-2023-04-04: 4 proposals
CROSS-CUTTING
· HORIZON-JTI-CLEANH2-2023-05-01: 2 proposals
· HORIZON-JTI-CLEANH2-2023-05-02: 4 proposals
· HORIZON-JTI-CLEANH2-2023-05-03: 1 proposal
HYDROGEN VALLEYS
· HORIZON-JTI-CLEANH2-2023-06-01: 8 proposals
· HORIZON-JTI-CLEANH2-2023-06-02: 20 proposals
STRATEGIC RESEARCH CHALLENGES
· HORIZON-JTI-CLEANH2-2023-07-01: 3 proposals
· HORIZON-JTI-CLEANH2-2023-07-02: 3 proposals
Evaluation results are expected to be communicated in July 2023.
PROPOSAL NUMBERS
Call HORIZON-JTI-CLEANH2-2023-1 has closed on the 18/04/2023.
132 proposals have been submitted.
The breakdown per topic is:
RENEWABLE HYDROGEN PRODUCTION
· HORIZON-JTI-CLEANH2-2023-01-01: 24 proposals
· HORIZON-JTI-CLEANH2-2023-01-02: 3 proposals
· HORIZON-JTI-CLEANH2-2023-01-03: 7 proposals
· HORIZON-JTI-CLEANH2-2023-01-04: 11 proposals
· HORIZON-JTI-CLEANH2-2023-01-05: 8 proposals
· HORIZON-JTI-CLEANH2-2023-01-06: 0 proposal
· HORIZON-JTI-CLEANH2-2023-01-07: 1 proposal
HYDROGEN STORAGE AND DISTRIBUTION
· HORIZON-JTI-CLEANH2-2023-02-01: 4 proposals
· HORIZON-JTI-CLEANH2-2023-02-02: 2 proposals
· HORIZON-JTI-CLEANH2-2023-02-03: 2 proposals
· HORIZON-JTI-CLEANH2-2023-02-04: 3 proposals
· HORIZON-JTI-CLEANH2-2023-02-05: 1 proposal
HYDROGEN END USES: TRANSPORT APPLICATIONS
· HORIZON-JTI-CLEANH2-2023-03-01: 1 proposal
· HORIZON-JTI-CLEANH2-2023-03-02: 7 proposals
· HORIZON-JTI-CLEANH2-2023-03-03: 1 proposal
HYDROGEN END USES: CLEAN HEAT AND POWER
· HORIZON-JTI-CLEANH2-2023-04-01: 2 proposals
· HORIZON-JTI-CLEANH2-2023-04-02: 8 proposals
· HORIZON-JTI-CLEANH2-2023-04-03: 2 proposals
· HORIZON-JTI-CLEANH2-2023-04-04: 4 proposals
CROSS-CUTTING
· HORIZON-JTI-CLEANH2-2023-05-01: 2 proposals
· HORIZON-JTI-CLEANH2-2023-05-02: 4 proposals
· HORIZON-JTI-CLEANH2-2023-05-03: 1 proposal
HYDROGEN VALLEYS
· HORIZON-JTI-CLEANH2-2023-06-01: 8 proposals
· HORIZON-JTI-CLEANH2-2023-06-02: 20 proposals
STRATEGIC RESEARCH CHALLENGES
· HORIZON-JTI-CLEANH2-2023-07-01: 3 proposals
· HORIZON-JTI-CLEANH2-2023-07-02: 3 proposals
Evaluation results are expected to be communicated in July 2023.
In section "Topic conditions and documents", the documents Application form - Part B (HE CleanH2 RIA, IA) and Application form - Part B (HE CleanH2 CSA) have been updated.