Design for advanced and scalable manufacturing of electrolysers
HORIZON JU Research and Innovation Actions
Basic Information
- Identifier
- HORIZON-JTI-CLEANH2-2022-01-04
- Programme
- HORIZON-JTI-CLEANH2-2022
- Programme Period
- 2021 - 2027
- Status
- Closed (31094503)
- Opening Date
- March 31, 2022
- Deadline
- September 20, 2022
- Deadline Model
- single-stage
- Budget
- €121,000,000
- Min Grant Amount
- €7,000,000
- Max Grant Amount
- €7,000,000
- Expected Number of Grants
- 1
- Keywords
- Materials engineeringMechanical engineeringdesign for manufacturingelectrolysermanufacturing
Description
The huge leap expected in the evolution of water electrolyser technology can be performed only by reaching significant technical and economic targets. The European Hydrogen strategy targets 6 GW installed electrolyser capacity by 2024 ramping up to 40 GW electrolyser capacity by 2030. To achieve such targets, both products and production processes should undergo a significant enhancement, by means of strong cost reduction program, as well as improved automation and technologies. Such upgrades can be applied to the several steps of manufacturing, starting from the single electrolyser cell to the stack assembly. Therefore, it is necessary that the whole manufacturing chain is involved in this cost reduction/performance improvement of the electrolyser stacks required to produce enough renewable hydrogen to fulfil the EU targets, similarly to the on-going manufacturing development of fuel cells (e.g. slot die coating for Catalyst Coated Membrane, plasma spray, roll-to-roll coaters).
The project should aim to find the best compromise between CAPEX and OPEX[1] costs to minimise the cost of produced hydrogen, also considering the output pressure.
At the end of the project the achievement of the target figures described in detail above should be demonstrated. The outcome should be a novel component(s) or manufacturing process(es) integrated in a demonstrator stack. The scalability of the final demonstrator and the cost targets of hydrogen should be clearly proven with a business plan.
Project results are expected to contribute to all the following expected outcomes:
- Improving efficiency by 2-4% LHV compared to the use of the present state of the art solutions;
- Increase system reliability and significantly reduce manufacturing costs resulting in an overall lower CAPEX and reaching a projected levelised cost of hydrogen (LCOH) below 3 €/kg assuming 40 €/MWh and 4,000 full load hours operation@, after the scaling up of the foreseen manufacturing techniques;
- Demonstrate the value of advanced manufacturing techniques to reduce manufacturing times enhancing printing or assembly tolerances versus the state of the art.
To address the above-mentioned cost system targets, the project is focusing on stack/components manufacturing and should at least reach the 2024 KPIs stack targets (degradation, current density, limited use of Critical Raw Materials) included in the Clean Hydrogen JU SRIA. Project results are expected to contribute to all of the following objectives of the Clean Hydrogen JU SRIA as summarised below.
- AEL Degradation (%/1,000 hrs) 0.11, Current density (A/cm2) 0.7, Use of CRMs as catalysts (Mg/W) 0.3;
- PEMEL Degradation (%/1,000 hrs) 0.15, Current density (A/cm2) 2.4, Use of CRMs as catalysts (Mg/W) 1.25;
- AEMEL Degradation (%/1,000 hrs) 0.9, Current density (A/cm2) 0.6, Use of CRMs as catalysts (Mg/W) 0.4;
- SOEL Degradation (%/1,000 hrs) 1, Current density (A/cm2) 0.85.
European R&D institutions and hydrogen-related companies should join their efforts to reach the following targets provided by the system costs Key Performance Indicators (KPIs), which have been set for all the major electrolysis processes (Alkaline Electrolysis (AEL), Proton Exchange Membrane Electrolysis (PEMEL), Solid Oxide Electrolysis (SOEL), Anion Exchange Membrane Electrolysis (AEMEL):
- The capital costs per system, calculated on 100MW production volume for a single company, are expected to drop well below 1,000 €/kW for all technologies (AEL capital costs should decrease at least to 480 €/kW, aiming at 400 €/kW; PEMEL capital costs should decrease at least to 700 €/kW, aiming at 500 €/kW; SOEL capital costs should at least be below 1,000 €/kW, aiming at 700 €/kW; AEMEL should aim to 300 €/kW);
- The operational and maintenance costs (O&M) should also be reduced, by means of an increased reliability of the stack and the application of advanced monitoring systems, i.e. predictive maintenance (AEL O&M costs should decrease at least below 50 €/(kg/d)/yr; PEMEL O&M costs should decrease at least to 30 €/(kg/d)/yr, aiming to 20 €/(kg/d)/yr; SOEL O&M cost should decrease at least to 130 €/(kg/d)/yr, aiming to 45 €/(kg/d)/yr; AEMEL O&M cost should aim to 20 €/(kg/d)/yr).
Proposals should aim to significant and innovative improvements of the manufacturing processes to achieve the expected KPI targets. The changes can involve both the manufacturing of components of the single unit (e.g. innovative materials and processes) and the assembly of a whole stack (e.g. automation). Integrated quality control and monitoring systems are also included.
The following items are in scope of this topic and should lead to cost reduction and cell/stack reliability improvement. Scalability should be considered for each of the research paths to be followed in the project. The project should consider the re-use and recycling of the electrolysers and their components at their end of life. Proposals should address at least 3 of the topics below:
- Alternatives and/or novel processes should be identified, allowing improved conduction coatings with impact on Platinum group metals (PGM) content. Catalysts should be reduced in water electrolysers, since they are both very expensive and CRMs;
- Exploration of new surface coating technologies and advanced manufacturing processes (e.g., 3D printing) for more efficient mass production, which can allow higher current density and process efficiency;
- Improvement of manufacturing throughput, feature control, and scale for electrolyser bipolar plates to be coupled with a reduction of the processing cost through cost-effective and mass production-friendly processing techniques, including forming, punching, cleaning, coating and other processes;
- Reduction of the manufacturing steps and transportation costs required to fabricate porous transport layers/gas diffusion layers;
- Improvement of the level of automation of the cell stacks assembly thanks to the development of robotics tooling and automated inspection;
- Test and development of scalable predictive maintenance devices which can greatly reduce the O&M costs of the electrolyser stack;
- Include process design to leverage the recyclability of the materials at the end of life and the utilisation of recycled materials in novel manufacturing on a circularity approach.
Consortia should include at least one electrolyser OEM, one actor from the manufacturing sector and at least one SME.
Consortia are encouraged to consider some of the best practices from the fuel cell manufacturing sector not yet adopted in the electrolyser manufacturing and that could be beneficial to it. In addition, consortia are encouraged to explore synergies and cooperation with Made in Europe partnership (Cluster 7).
Proposals are expected to address sustainability and circularity aspects. In particular, circularity and sustainability by design concepts should be holistically considered towards the whole technology chain.
Activities are expected to start at MRL 4 and achieve MRL 5 by the end of the project.
The conditions related to this topic are provided in the chapter 2.2.3.2 of the Clean Hydrogen JU 2022 Annual Work Plan and in the General Annexes to the Horizon Europe Work Programme 2021–2022 which apply mutatis mutandis.
[1]O&M costs
Eligibility & Conditions
General conditions
1. Admissibility conditions: described in Annex A and Annex E of the Horizon Europe Work Programme General Annexes
Proposal page limits and layout: described in Part B of the Application Form available in the Submission System
Additional condition: For all Innovation Actions the page limit of the applications are 70 pages.
2. Eligible countries: described in Annex B of the Work Programme General Annexes
A number of non-EU/non-Associated Countries that are not automatically eligible for funding have made specific provisions for making funding available for their participants in Horizon Europe projects. See the information in the Horizon Europe Programme Guide.
3. Other eligibility conditions: described in Annex B of the Work Programme General Annexes
Additional eligibility condition: Maximum contribution per topic
For some topics, in line with the Clean Hydrogen JU SRIA, an additional eligibility criterion has been introduced to limit the Clean Hydrogen JU requested contribution mostly for actions performed at high TRL level, including demonstration in real operation environment and with important involvement from industrial stakeholders and/or end users such as public authorities. Such actions are expected to leverage co-funding as commitment from stakeholders. It is of added value that such leverage is shown through the private investment in these specific topics. Therefore, proposals requesting contributions above the amounts specified per each topic below will not be evaluated:
- HORIZON-JTI-CLEANH2-2022 -01-07 - The maximum Clean Hydrogen JU contribution that may be requested is EUR 9.00 million
- HORIZON-JTI-CLEANH2-2022 -03-03 - The maximum Clean Hydrogen JU contribution that may be requested is EUR 30.00 million
- HORIZON-JTI-CLEANH2-2022 -03-05 - The maximum Clean Hydrogen JU contribution that may be requested is EUR 15.00 million
- HORIZON-JTI-CLEANH2-2022 -04-01 - The maximum Clean Hydrogen JU contribution that may be requested is EUR 7.00 million
- HORIZON-JTI-CLEANH2-2022 -06-01 - The maximum Clean Hydrogen JU contribution that may be requested is EUR 25.00 million
- HORIZON-JTI-CLEANH2-2022 -06-02 - The maximum Clean Hydrogen JU contribution that may be requested is EUR 8.00 million
Additional eligibility condition: Membership to Hydrogen Europe/Hydrogen Europe Research
For some topics, in line with the Clean Hydrogen JU SRIA, an additional eligibility criterion has been introduced to ensure that one partner in the consortium is a member of either Hydrogen Europe or Hydrogen Europe Research. This concerns topics targeting actions for large-scale demonstrations, flagship projects and strategic research actions, where the industrial and research partners of the Clean Hydrogen JU are considered to play a key role in accelerating the commercialisation of hydrogen technologies by being closely linked to the Clean Hydrogen JU constituency, which could further ensure full alignment with the Strategic Research and Innovation Agenda of the Industry and the SRIA188 of the JU. This approach shall also ensure the continuity of the work performed within projects funded through the H2020 and FP7, by building up on their experience and consolidating the EU value-chain. This applies to the following topics:
- HORIZON-JTI-CLEANH2-2022 -01-07
- HORIZON-JTI-CLEANH2-2022 -01-08
- HORIZON-JTI-CLEANH2-2022 -01-10
- HORIZON-JTI-CLEANH2-2022 -02-08
- HORIZON-JTI-CLEANH2-2022 -03-03
- HORIZON-JTI-CLEANH2-2022 -03-05
- HORIZON-JTI-CLEANH2-2022 -04-01
- HORIZON-JTI-CLEANH2-2022 -06-01
- HORIZON-JTI-CLEANH2-2022 -06-02
- HORIZON-JTI-CLEANH2-2022 -07-01
Additional eligibility condition: Participation of African countries
For one topic the following additional eligibility criteria have been introduced to allow African countries to i) participate in proposal, ii) be eligible for funding and iii) ensure a sufficient geographical coverage of the African continent. This concerns the following topic:
- HORIZON-JTI-CLEANH2-2022 -05-5
Manufacturing Readiness Assessment
For some topics a definition of Manufacturing Readiness Level has been introduced in the Annexes of the Annual Work Programme. This is necessary to evaluate the status of the overall manufacturing activities included in the following topics:
- HORIZON-JTI-CLEANH2-2022 -01-04
- HORIZON-JTI-CLEANH2-2022 -04-01
4. Financial and operational capacity and exclusion: described in Annex C of the Work Programme General Annexes
5. Evaluation and award:
- Award criteria, scoring and thresholds are described in Annex D of the Work Programme General Annexes
- Submission and evaluation processes are described in Annex F of the Work Programme General Annexes and the Online Manual
Exemption to evaluation procedure: complementarity of projects
For some topics in order to ensure a balanced portfolio covering complementary approaches, grants will be awarded to applications not only in order of ranking but at least also to one additional project that is / are complementary, provided that the applications attain all thresholds
- HORIZON-JTI-CLEANH2-2022 -01-03
- HORIZON-JTI-CLEANH2-2022 -01-04
- HORIZON-JTI-CLEANH2-2022 -01-09
- HORIZON-JTI-CLEANH2-2022 -02-10
- HORIZON-JTI-CLEANH2-2022 -03-01
- HORIZON-JTI-CLEANH2-2022 -03-02
- HORIZON-JTI-CLEANH2-2022 -03-04
- HORIZON-JTI-CLEANH2-2022 -04-04
Seal of Excellence
For two topics the ‘Seal of Excellence’ will be awarded to applications exceeding all of the evaluation thresholds set out in this Annual Work Programme but cannot be funded due to lack of budget available to the call. This will further improve the chances of good proposals, otherwise not selected, to find alternative funding in other Union programmes, including those managed by national or regional Managing Authorities. With prior authorisation from the applicant, the Clean Hydrogen JU may share information concerning the proposal and the evaluation with interested financing authorities, subject to the conclusion of confidentiality agreements. In this Annual Work Programme ‘Seal of Excellence’ will be piloted for topics:
- HORIZON-JTI-CLEANH2-2022 -06-01
- HORIZON-JTI-CLEANH2-2022 -06-02
To ensure a balanced portfolio covering complementary approaches, grants will be awarded to applications not only in order of ranking but at least also to one additional project that is / are complementary, provided that the applications attain all thresholds.
- Indicative timeline for evaluation and grant agreement: described in Annex F of the Work Programme General Annexes
6. Legal and financial set-up of the grants: described in Annex G of the Work Programme General Annexes
In addition to the standard provisions, the following specific provisions in the model grant agreement will apply:
Intellectual Property Rights (IPR), background and results, access rights and rights of use (article 16 and Annex 5 of the Model Grant Agreement (MGA)).
- An additional information obligation has been introduced for topics including standardisation activities: ‘Beneficiaries must, up to 4 years after the end of the action, inform the granting authority if the results could reasonably be expected to contribute to European or international standards’. These concerns the topics below:
Additional information obligation for topics including standardisation activities
- HORIZON-JTI-CLEANH2-2022 -02-09
- HORIZON-JTI-CLEANH2-2022 -03-04
- HORIZON-JTI-CLEANH2-2022 -05-02
- HORIZON-JTI-CLEANH2-2022 -05-03
- HORIZON-JTI-CLEANH2-2022 -05-04
- For all topics in this Work Programme Clean Hydrogen JU shall have the right to object to transfers of ownership of results, or to grants of an exclusive licence regarding results, if: (a) the beneficiaries which generated the results have received Union funding; (b) the transfer or licensing is to a legal entity established in a non-associated third country; and (c) the transfer or licensing is not in line with Union interests. The grant agreement shall contain a provision in this respect.
Full capitalised costs for purchases of equipment, infrastructure or other assets purchased specifically for the action
For some topics, in line with the Clean Hydrogen JU SRIA, mostly large-scale demonstrators or flagship projects specific equipment, infrastructure or other assets purchased specifically for the action (or developed as part of the action tasks) can exceptionally be declared as full capitalised costs. This concerns the topics below:
- HORIZON-JTI-CLEANH2-2022 -01-07: electrolyser and other hydrogen related equipment essential for implementation of the project, (e.g. compression of hydrogen, storage and any essential end-use technology)
- HORIZON-JTI-CLEANH2-2022 -01-08: electrolyser, its BoP and any other hydrogen related equipment essential for the implementation of the project (e.g. hydrogen storage)
- HORIZON-JTI-CLEANH2-2022 -01-10: electrolyser, its BOP and any other hydrogen related equipment essential for implementation of the project (e.g. offshore infrastructure, renewable electricity supply infrastructure, storages, pipelines and other auxiliaries required to convey and utilise the hydrogen)
- HORIZON-JTI-CLEANH2-2022 -02-08: compression prototype/s and related components
- HORIZON-JTI-CLEANH2-2022 -03-03: trucks, fuel cell system, on-board hydrogen storage and other components needed in a hydrogen truck
- HORIZON-JTI-CLEANH2-2022 -03-05: vessels, fuel cell system, on-board hydrogen storage and other components needed in a hydrogen fuel cell hydrogen vessel
- HORIZON-JTI-CLEANH2-2022 -04-01: manufacturing equipment and tooling
- HORIZON-JTI-CLEANH2-2022 -06-01: hydrogen production plant, distribution and storage infrastructure and hydrogen end-uses
- HORIZON-JTI-CLEANH2-2022 -06-02: hydrogen production plant, distribution and storage infrastructure and hydrogen end-uses
Specific conditions
7. Specific conditions: described in the chapter 2.2.3.2 of the Clean Hydrogen JU 2022 Annual Work Plan
Documents
CALL UPDATE: FLASH CALL INFO
Call documents:
Application form — As well available in the Submission System from March 31st 2022
- Application form - Part B (HE CleanH2 RIA, IA)
- Application form - Part B (HE CleanH2 CSA)
Evaluation forms
- Evaluation form (HE RIA, IA)
Model Grant Agreement (MGA)
Clean Hydrogen JU - Annual Work Programme 2022 (AWP 2022)
- AWP 2022
Clean Hydrogen JU - Strategic Research and Innovation Agenda (SRIA)
Additional documents:
HE Main Work Programme 2021–2022 – 1. General Introduction
HE Main Work Programme 2021–2022 – 13. General Annexes
HE Framework Programme and Rules for Participation Regulation 2021/695
HE Specific Programme Decision 2021/764
Rules for Legal Entity Validation, LEAR Appointment and Financial Capacity Assessment
EU Grants AGA — Annotated Model Grant Agreement
Funding & Tenders Portal Online Manual
Support & Resources
Online Manual is your guide on the procedures from proposal submission to managing your grant.
Horizon Europe Programme Guide contains the detailed guidance to the structure, budget and political priorities of Horizon Europe.
Funding & Tenders Portal FAQ – find the answers to most frequently asked questions on submission of proposals, evaluation and grant management.
Research Enquiry Service – ask questions about any aspect of European research in general and the EU Research Framework Programmes in particular.
National Contact Points (NCPs) – get guidance, practical information and assistance on participation in Horizon Europe. There are also NCPs in many non-EU and non-associated countries (‘third-countries’).
Enterprise Europe Network – contact your EEN national contact for advice to businesses with special focus on SMEs. The support includes guidance on the EU research funding.
IT Helpdesk – contact the Funding & Tenders Portal IT helpdesk for questions such as forgotten passwords, access rights and roles, technical aspects of submission of proposals, etc.
European IPR Helpdesk assists you on intellectual property issues.
CEN-CENELEC Research Helpdesk and ETSI Research Helpdesk – the European Standards Organisations advise you how to tackle standardisation in your project proposal.
The European Charter for Researchers and the Code of Conduct for their recruitment – consult the general principles and requirements specifying the roles, responsibilities and entitlements of researchers, employers and funders of researchers.
Partner Search Services help you find a partner organisation for your proposal.
Latest Updates
No updates available.